As the increasing number of Phasor Measurement Units(PMUs) are deployed, wide area protection in power systems has been gaining interest. In particular, fault detection, fault classification and fault area estimation ...As the increasing number of Phasor Measurement Units(PMUs) are deployed, wide area protection in power systems has been gaining interest. In particular, fault detection, fault classification and fault area estimation are essential to reduce the damage of faults, and even prevent catastrophic cascades of failures. In this paper, we present a scheme for fault area estimation using PMUs and traveling wave theory. The purpose of this paper is to formulate a scheme for fault area estimation by calculating the approximate fault location based on traveling wave theory.This research has targeted at reliable operation of wide transmission system through the estimation of fault area.To verify the suggested scheme, the various simulations are performed in practical Korean power transmission system.The simulation results show that the proposed scheme has a good performance with high accuracy for estimating fault area.展开更多
In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where...In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8 -m. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.2015R1A2A1A10052459)
文摘As the increasing number of Phasor Measurement Units(PMUs) are deployed, wide area protection in power systems has been gaining interest. In particular, fault detection, fault classification and fault area estimation are essential to reduce the damage of faults, and even prevent catastrophic cascades of failures. In this paper, we present a scheme for fault area estimation using PMUs and traveling wave theory. The purpose of this paper is to formulate a scheme for fault area estimation by calculating the approximate fault location based on traveling wave theory.This research has targeted at reliable operation of wide transmission system through the estimation of fault area.To verify the suggested scheme, the various simulations are performed in practical Korean power transmission system.The simulation results show that the proposed scheme has a good performance with high accuracy for estimating fault area.
文摘In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8 -m. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.