Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonic...Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonics PN(x) of order≤N and a constant C〉0 such that where ω(f,δ)L^p=sup 0〈t≤δ‖St(f)-f‖L^p is a kind of moduli of continuity and ^‖f-1/PN‖L^p≤Cω(f,N^-1)L^p,St(f,μ)=1/|S^q-2|Sin^2λt ∫-μμ’=t f(μ')dμ' is a translation operator.展开更多
We denote N, R, C the sets of natural, real and complex numbers respectively. Let (λ<sub>n</sub>), n ∈ N be an unbounded sequence of complex numbers. Costakis has proved the following result. There ...We denote N, R, C the sets of natural, real and complex numbers respectively. Let (λ<sub>n</sub>), n ∈ N be an unbounded sequence of complex numbers. Costakis has proved the following result. There exists an entire function f with the following property: for every x, y ∈ R with 0 , every θ ∈(0,1) and every a ∈ C there is a subsequence of natural numbers (m<sub>n</sub>), n ∈ N such that, for every compact subset L ⊆C , In the present paper we show that the constant function a cannot be replaced by any non-constant entire function G. This is so even if one demands the convergence in (*) only for a single radius r and a single positive number θ. This result is related with the problem of existence of common universal vectors for an uncountable family of sequences of translation operators.展开更多
We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of trans...We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator.Also we introduce a universal formula for adjoint of an arbitrary linear operator.Our procedure in this paper is totally different from others,as we explore a general approach based only on the algebra of the operators.Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.展开更多
基金Supported by the National Natural Science Foundation of China (No.10371024), the Natural Science of Zhejiang Province (No. Y604003) and the Doctor Foundation of Ningbo City (No.2004A620017).
文摘Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonics PN(x) of order≤N and a constant C〉0 such that where ω(f,δ)L^p=sup 0〈t≤δ‖St(f)-f‖L^p is a kind of moduli of continuity and ^‖f-1/PN‖L^p≤Cω(f,N^-1)L^p,St(f,μ)=1/|S^q-2|Sin^2λt ∫-μμ’=t f(μ')dμ' is a translation operator.
文摘We denote N, R, C the sets of natural, real and complex numbers respectively. Let (λ<sub>n</sub>), n ∈ N be an unbounded sequence of complex numbers. Costakis has proved the following result. There exists an entire function f with the following property: for every x, y ∈ R with 0 , every θ ∈(0,1) and every a ∈ C there is a subsequence of natural numbers (m<sub>n</sub>), n ∈ N such that, for every compact subset L ⊆C , In the present paper we show that the constant function a cannot be replaced by any non-constant entire function G. This is so even if one demands the convergence in (*) only for a single radius r and a single positive number θ. This result is related with the problem of existence of common universal vectors for an uncountable family of sequences of translation operators.
文摘We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator.Also we introduce a universal formula for adjoint of an arbitrary linear operator.Our procedure in this paper is totally different from others,as we explore a general approach based only on the algebra of the operators.Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.