Late-stage modification of peptides and proteins meets the increasing demand in biochemical and pharmaceutical communities. These modification strategies could provide functionalized nonproteinogenic analogues with en...Late-stage modification of peptides and proteins meets the increasing demand in biochemical and pharmaceutical communities. These modification strategies could provide functionalized nonproteinogenic analogues with enhanced biological activities or improved therapeutic capabilities compared to their natural counterparts. Recent years, transition-metal-promoted functionalization of ubiquitous C-H bonds has been emerged as a powerful and tunable tool in this area, both for backbone diversifications and labeling of specific moieties. These reactions were flexible and expedient in both academic and industrial laboratories, especially considering their atom and step-economy, good functional group compatibility, accurate site selectivity. This review surveys the progress achieved in the late-stage modification of peptides and proteins utilizing transition-metal-catalyzed C-H functionalization with C-C and C-X(F, Cl, O, N, B, etc.) bonds formation.展开更多
IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high p...IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high purity separation product of maximum added value at a competitive cost.SuperLig products have high selectivity for many target species which can include metal ions,anions,and neutral molecules.In operation,the SuperLig product is first placed in a packed column.A solution containing a mixture of the target species and other chemical species is then passed through the column.The target species is removed selectively by the SuperLig product,the column is washed to remove residual feed solution,and the target species is recovered by a minimal quantity of eluent.The result is a pure and concentrated species that can be kept for its value or disposed of safely.The process is environmentally and ecologically friendly with no organic solvents being used.This paper provides a review of some examples of applications of MRT to separations of interest to the Chinese metallurgical industry.Included are several applications of MRT,including Pd separations from Pt metal refinery streams and low-grade spent catalyst wastes,Rh recovery from spent auto catalyst and other feeds,Re removal from selected impurity ions,Cd removal from Co electrolyte,Bi removal from Cu electrolyte,In and Ge separations from difficult matrices,and removal of bivalent first transition series and other metal ions from acid mine drainage(Berkeley Pit,Montana).Finally,the potential application of MRT to separations involving the recovery of rare earth metals and Li from low-level waste solutions and end-of-life products is discussed.展开更多
Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of c...Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.展开更多
Transition metals and their oxide materials have been widely employed to fabricate superhydrophobic surfaces, not only because of their surface topography with controllable microstructures leading to water-repellence,...Transition metals and their oxide materials have been widely employed to fabricate superhydrophobic surfaces, not only because of their surface topography with controllable microstructures leading to water-repellence, diverse adhesion even tun- able wettability, but also due to a variety of special properties like optical performance, magnetism, anti-bacterial, transparency and so on. At the meantime, biomimetic superhydrophobic surfaces have attracted great interest from fabricating hierarchical micro-/nano-structures inspired by nature to imitate creature's properties and many potential applications, including self-cleaning, antifogging, antireflection, low drag and great stability and durability. In this review, natural surfaces and biomimetic materials with special wettability are introduced by classification according to the similar microstructure of mor- phology, like array structure, sheet overlapped structure, high density hairs and seta shaped structure. Not only do we exhibit their special performances, but also try to find out the true reasons behind the phenomenon. Then, the recent progress of a series of superhydrophobic transition mental and their oxide materials, including TiO2, ZnO, Fe304, CuO, Ag, Au and so on, is pre- sented with a focus on fabricating methods, microstructures, wettability, and other properties. As followed, these superhydro- phobic surfaces can be applied in many fields, such as oil/water separation, self-cleaning, photo-controlled reversible wet- tability, surface-enhanced Raman scattering, antibacterial, anticorrosion, and synthesis of various applications. However, few of them have been applied in practical life. Hence, we discuss the remaining challenges at present and the development tendency in future at the end of this article. This review aims to present recent development of transition metals and their oxides applied in biomimetic superhydrophobic surfaces about fabrication, microstructure, water repellence, various properties, and potential applications.展开更多
基金the support from the National Key R&D Program of China(No. 2017YFA0505400)the National Natural Science Foundation of China (Nos. 21572214, 21702200)
文摘Late-stage modification of peptides and proteins meets the increasing demand in biochemical and pharmaceutical communities. These modification strategies could provide functionalized nonproteinogenic analogues with enhanced biological activities or improved therapeutic capabilities compared to their natural counterparts. Recent years, transition-metal-promoted functionalization of ubiquitous C-H bonds has been emerged as a powerful and tunable tool in this area, both for backbone diversifications and labeling of specific moieties. These reactions were flexible and expedient in both academic and industrial laboratories, especially considering their atom and step-economy, good functional group compatibility, accurate site selectivity. This review surveys the progress achieved in the late-stage modification of peptides and proteins utilizing transition-metal-catalyzed C-H functionalization with C-C and C-X(F, Cl, O, N, B, etc.) bonds formation.
文摘IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high purity separation product of maximum added value at a competitive cost.SuperLig products have high selectivity for many target species which can include metal ions,anions,and neutral molecules.In operation,the SuperLig product is first placed in a packed column.A solution containing a mixture of the target species and other chemical species is then passed through the column.The target species is removed selectively by the SuperLig product,the column is washed to remove residual feed solution,and the target species is recovered by a minimal quantity of eluent.The result is a pure and concentrated species that can be kept for its value or disposed of safely.The process is environmentally and ecologically friendly with no organic solvents being used.This paper provides a review of some examples of applications of MRT to separations of interest to the Chinese metallurgical industry.Included are several applications of MRT,including Pd separations from Pt metal refinery streams and low-grade spent catalyst wastes,Rh recovery from spent auto catalyst and other feeds,Re removal from selected impurity ions,Cd removal from Co electrolyte,Bi removal from Cu electrolyte,In and Ge separations from difficult matrices,and removal of bivalent first transition series and other metal ions from acid mine drainage(Berkeley Pit,Montana).Finally,the potential application of MRT to separations involving the recovery of rare earth metals and Li from low-level waste solutions and end-of-life products is discussed.
基金supported by the National Science Foundation of China(nos.22071105 and 22031008)the Qinglan Project of Jiangsu Education Department.
文摘Although the combination of electrochemistry and homogeneous catalysis has proven to be a powerful strategy for achieving a diverse array of novel transformations,some challenges such as controlling the diffusion of catalyst-related species and the instability of catalysts at electrodes remain to be overcome.Herein,we review recent advances in electrochemical homogeneous catalysis,focusing on electrochemical noble-transition-metal catalysis,photoelectrochemical catalysis,and electrochemical enantioselective catalysis.The topics discussed include:(1)how the noblemetal catalystworks in the presence of cathodic hydrogen evolution,(2)how the photocatalyst gets enhanced redox property,and(3)how the enantioselectivity is regulated in a catalytic electrochemical reaction.
基金This work is supported by the National Nature Science Foundation of China (Nos. 51522510 and 51675513), and the National 973 Project (No. 2013CB632300).
文摘Transition metals and their oxide materials have been widely employed to fabricate superhydrophobic surfaces, not only because of their surface topography with controllable microstructures leading to water-repellence, diverse adhesion even tun- able wettability, but also due to a variety of special properties like optical performance, magnetism, anti-bacterial, transparency and so on. At the meantime, biomimetic superhydrophobic surfaces have attracted great interest from fabricating hierarchical micro-/nano-structures inspired by nature to imitate creature's properties and many potential applications, including self-cleaning, antifogging, antireflection, low drag and great stability and durability. In this review, natural surfaces and biomimetic materials with special wettability are introduced by classification according to the similar microstructure of mor- phology, like array structure, sheet overlapped structure, high density hairs and seta shaped structure. Not only do we exhibit their special performances, but also try to find out the true reasons behind the phenomenon. Then, the recent progress of a series of superhydrophobic transition mental and their oxide materials, including TiO2, ZnO, Fe304, CuO, Ag, Au and so on, is pre- sented with a focus on fabricating methods, microstructures, wettability, and other properties. As followed, these superhydro- phobic surfaces can be applied in many fields, such as oil/water separation, self-cleaning, photo-controlled reversible wet- tability, surface-enhanced Raman scattering, antibacterial, anticorrosion, and synthesis of various applications. However, few of them have been applied in practical life. Hence, we discuss the remaining challenges at present and the development tendency in future at the end of this article. This review aims to present recent development of transition metals and their oxides applied in biomimetic superhydrophobic surfaces about fabrication, microstructure, water repellence, various properties, and potential applications.