The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field...The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.展开更多
The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^...The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^(30)Si(^(3)He,d)^(31)P,^(13)B(d,^(3)He)^(12)Be,and^(34)S(^(3)He,d)^(35)Cl reactions at incident energies of 25,46,and 25 MeV,respectively,within the framework of the distorted wave Born approximation.The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%,owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters.This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies.Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed.展开更多
In the T-matrix form of the transfer reaction,the optical model potentials(OMPs)are used to compute the scattering wave function and transition operator.For most cases,the elastic scattering cross sections,normally us...In the T-matrix form of the transfer reaction,the optical model potentials(OMPs)are used to compute the scattering wave function and transition operator.For most cases,the elastic scattering cross sections,normally used to generate the OMPs,are not directly given in the same experiment.Then,the global OMPs,which fit the experimental data over a broad mass and energy range,are widely used in the theoretical calculations.Different sets of global OMPs with different parameter sets can reproduce the scattering cross section equally well within the uncertainty.Here,we apply different global OMPs to calculate the(differential)cross sections of(d,p)transfer reactions on the target nuclei^(12)C,^(48)Ca,^(124)Sn,and^(208)Pb at different energies.The results demonstrate that the effects of deuteron and nucleon global OMPs on transfer(differential)cross sections vary with energy and target mass.Furthermore,the influences of the spin-orbit coupling term of deuteron and nucleon global OMPs on the transfer cross sections are not negligible.展开更多
This paper presents the results of a study that compares CTOM, a microscopic optical model potential(OMP), which is an optical model co-created by the China Nuclear Data Center & Tuebingen University, to CH89, whi...This paper presents the results of a study that compares CTOM, a microscopic optical model potential(OMP), which is an optical model co-created by the China Nuclear Data Center & Tuebingen University, to CH89, which is a typical phenomenological OMP.The respective OMPs were tested by applying them to the modelling of nucleon elastic scattering and(d,p) transfer reactions involving14C,36S, and58Ni targets at both low and relatively high energies. The results demonstrated that although both potentials successfully accounted for the angular distributions of both the elastic scattering and transfer cross sections, the absolute values of the transfer cross sections calculated using CTOM were approximately 25% larger than those calculated using CH89. This increased transfer cross sections allowed CTOM to produce single particle strength reduction factors for the three reactions that were consistent with those extracted from(e,e′p) reactions as well as with more recent(p,2p) and(p,pn) reactions. Notch tests suggested that nucleon elastic scattering and transfer reactions are sensitive to different regions of the OMP;accordingly,phenomenological OMPs, which are constrained only by elastic scattering cross sections, may not be sufficient for nucleon transfer reactions. Therefore, we suggest that microscopic OMPs, which reflect more theoretical considerations, should be preferred over phenomenological ones in calculations of direct nuclear reactions.展开更多
文摘The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed.
基金supported by the National Natural Science Foundation of China(No.U2067205).
文摘The theoretical uncertainties of single proton transfer cross sections of the(^(3)He,d)and(d,^(3)He)reactions,owing to the uncertainties of the entrance-and exit-channel optical model potentials,are examined with the^(30)Si(^(3)He,d)^(31)P,^(13)B(d,^(3)He)^(12)Be,and^(34)S(^(3)He,d)^(35)Cl reactions at incident energies of 25,46,and 25 MeV,respectively,within the framework of the distorted wave Born approximation.The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%,owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters.This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies.Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed.
基金Supported by the National Natural Science Foundation of China(12035011,11975167,11535004,11947211,11905103,11761161001,11375086,11565010,11881240623,11961141003)the National Key R&D Program of China(2018YFA0404403,2016YFE0129300)+1 种基金the Science and Technology Development Fund of Macao(008/2017/AFJ)the Fundamental Research Funds for the Central Universities(22120200101)。
文摘In the T-matrix form of the transfer reaction,the optical model potentials(OMPs)are used to compute the scattering wave function and transition operator.For most cases,the elastic scattering cross sections,normally used to generate the OMPs,are not directly given in the same experiment.Then,the global OMPs,which fit the experimental data over a broad mass and energy range,are widely used in the theoretical calculations.Different sets of global OMPs with different parameter sets can reproduce the scattering cross section equally well within the uncertainty.Here,we apply different global OMPs to calculate the(differential)cross sections of(d,p)transfer reactions on the target nuclei^(12)C,^(48)Ca,^(124)Sn,and^(208)Pb at different energies.The results demonstrate that the effects of deuteron and nucleon global OMPs on transfer(differential)cross sections vary with energy and target mass.Furthermore,the influences of the spin-orbit coupling term of deuteron and nucleon global OMPs on the transfer cross sections are not negligible.
基金supported by the National Natural Science Foundation of China(Grant Nos.11775013,U1432247,11775316,U1630143,and 11465005)the National Key Research and Development Program(Grant No.2016YFA0400502)Science Challenge Project(Grant No.TZ2018001)
文摘This paper presents the results of a study that compares CTOM, a microscopic optical model potential(OMP), which is an optical model co-created by the China Nuclear Data Center & Tuebingen University, to CH89, which is a typical phenomenological OMP.The respective OMPs were tested by applying them to the modelling of nucleon elastic scattering and(d,p) transfer reactions involving14C,36S, and58Ni targets at both low and relatively high energies. The results demonstrated that although both potentials successfully accounted for the angular distributions of both the elastic scattering and transfer cross sections, the absolute values of the transfer cross sections calculated using CTOM were approximately 25% larger than those calculated using CH89. This increased transfer cross sections allowed CTOM to produce single particle strength reduction factors for the three reactions that were consistent with those extracted from(e,e′p) reactions as well as with more recent(p,2p) and(p,pn) reactions. Notch tests suggested that nucleon elastic scattering and transfer reactions are sensitive to different regions of the OMP;accordingly,phenomenological OMPs, which are constrained only by elastic scattering cross sections, may not be sufficient for nucleon transfer reactions. Therefore, we suggest that microscopic OMPs, which reflect more theoretical considerations, should be preferred over phenomenological ones in calculations of direct nuclear reactions.