In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a pl...In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.展开更多
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between al...In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.展开更多
In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic m...In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.展开更多
This paper deals with a three-dimensional nonlinear mathematical model to analyze an epidemic's future course when the public healthcare facilities,specifically the number of hospital beds,are limited.The feasibil...This paper deals with a three-dimensional nonlinear mathematical model to analyze an epidemic's future course when the public healthcare facilities,specifically the number of hospital beds,are limited.The feasibility and stability of the obtained equilibria are analyzed,and the basic reproduction number(Ro)is obtained.We show that the system exhibits transcritical bifurcation.To show the existence of Bogdanov-Takens bifurcation,we have derived the normal form.We have also discussed a generalized Hopf(or Bautin)bifurcation at which the first Lyapunov coefficient evanescences.To show the existence of saddle-node bifurcation,we used Sotomayor's theorem.Furthermore,we have identified an optimal layout of hospital beds in order to control the disease with minimum possible expenditure.An optimal control setting is studied analytically using optimal control theory,and numerical simulations of the optimal regimen are presented as well.展开更多
This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin-Berezovskaya predator-prey model in depth using analytical and numerical bifurcation analysis.The stability conditions of fix...This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin-Berezovskaya predator-prey model in depth using analytical and numerical bifurcation analysis.The stability conditions of fixed points,codim-1 and codim-2 bifurcations to include multiple and generic bifurcations are studied.This model exhibits transcritical,fip,Neimark-Sacker,and 1:2,1:3,1:4 strong resonances.The normal form coefficients and their scenarios for each bifurcation are examined by using the normal form theorem and bifurcation theory.For each bifurcation,various types of critical states are calculated,such as potential transformations between the one-parameter bifurcation point and different bifurcation points obtained from the two-parameter bifurcation point.To validate our analytical findings,the bifurcation curves of fixed points are determined by using MatcontM.展开更多
The predation process plays a significant role in advancing life evolution and the maintenance of ecological balance and biodiversity.Hunting cooperation in predators is one of the most remarkable features of the pred...The predation process plays a significant role in advancing life evolution and the maintenance of ecological balance and biodiversity.Hunting cooperation in predators is one of the most remarkable features of the predation process,which benefits the predators by developing fear upon their prey.This study investigates the dynamical behavior of a modified LV-type predator-prey system with Michaelis-Menten-type harvesting of predators where predators adopt cooperation strategy during hunting.The ecologically feasible steady states of the system and their asymptotic stabilities are explored.The local codimension one bifurcations,viz.transcritical,saddle-node and Hopf bifurcations,that emerge in the system are investigated.Sotomayors approach is utilized to show the appearance of transcritical bifurcation and saddle-node bifurcation.A backward Hopfbifurcation is detected when the harvesting effort is increased,which destabilizes the system by generating periodic solutions.The stability nature of the Hopf-bifurcating periodic orbits is determined by computing the first Lyapunov coefficient.Our analyses revealed that above a threshold value of the harvesting effort promotes the coexistence of both populations.Similar periodic solutions of the system are also observed when the conversion efficiency rate or the hunting cooperation rate is increased.We have also explored codimension two bifurcations viz.the generalized Hopf and the Bogdanov-Takens bifurcation exhibit by the system.To visualize the dynamical behavior of the system,numerical simulations are conducted using an ecologically plausible parameter set.The existence of the bionomic equilibrium of the model is analyzed.Moreover,an optimal harvesting policy for the proposed model is derived by considering harvesting effort as a control parameter with the help of Pontryagins maximum principle.展开更多
The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the econom...The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.展开更多
The dynamics of a single strain HIV model is studied. The basic reproduction number R0 used as a bifurcation parameter shows that the system undergoes transcritical and saddle-node bifurcations. The usual threshold un...The dynamics of a single strain HIV model is studied. The basic reproduction number R0 used as a bifurcation parameter shows that the system undergoes transcritical and saddle-node bifurcations. The usual threshold unit value of R0 does not completely determine the eradication of the disease in an HIV infected person. In particular, a sub-threshold value Rc is established which determines the system's number of endemic states: multiple if Rc 〈 Ro 〈 1, only one if Rc=Ro = 1, and none if R0 〈 Rc 〈 1.展开更多
Burgers equation is reduced into a first-order ordinary differential equation by using travelling wave transformation and it has typical bifurcation characteristics. We can obtain many exact solutions of the Burgers e...Burgers equation is reduced into a first-order ordinary differential equation by using travelling wave transformation and it has typical bifurcation characteristics. We can obtain many exact solutions of the Burgers equation, discuss its transcritical bifurcation and control dynamical behaviours by extending the stable region. The transcritical bifurcation exists in the (2 + 1)-dimensional Burgers equation.展开更多
文摘In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
文摘In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.
文摘In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.
基金The authors also thankfully acknowledge financial support from Council of Scientific and Industrial Research,India through a research fellowship(File No.09/013(0841)/2018-EMR-I)Jyoti Maurya and DST-Science and Engineering Research Board,MATRICS Expert committee(File No.MTR/2021/000819)A.K.Misra to carry out this research work.
文摘This paper deals with a three-dimensional nonlinear mathematical model to analyze an epidemic's future course when the public healthcare facilities,specifically the number of hospital beds,are limited.The feasibility and stability of the obtained equilibria are analyzed,and the basic reproduction number(Ro)is obtained.We show that the system exhibits transcritical bifurcation.To show the existence of Bogdanov-Takens bifurcation,we have derived the normal form.We have also discussed a generalized Hopf(or Bautin)bifurcation at which the first Lyapunov coefficient evanescences.To show the existence of saddle-node bifurcation,we used Sotomayor's theorem.Furthermore,we have identified an optimal layout of hospital beds in order to control the disease with minimum possible expenditure.An optimal control setting is studied analytically using optimal control theory,and numerical simulations of the optimal regimen are presented as well.
文摘This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin-Berezovskaya predator-prey model in depth using analytical and numerical bifurcation analysis.The stability conditions of fixed points,codim-1 and codim-2 bifurcations to include multiple and generic bifurcations are studied.This model exhibits transcritical,fip,Neimark-Sacker,and 1:2,1:3,1:4 strong resonances.The normal form coefficients and their scenarios for each bifurcation are examined by using the normal form theorem and bifurcation theory.For each bifurcation,various types of critical states are calculated,such as potential transformations between the one-parameter bifurcation point and different bifurcation points obtained from the two-parameter bifurcation point.To validate our analytical findings,the bifurcation curves of fixed points are determined by using MatcontM.
基金jointly supported by the National Natural Science Foundation of China(62173139)the Science and Technology Innovation Program of Hunan Province(2021RC4030).
文摘The predation process plays a significant role in advancing life evolution and the maintenance of ecological balance and biodiversity.Hunting cooperation in predators is one of the most remarkable features of the predation process,which benefits the predators by developing fear upon their prey.This study investigates the dynamical behavior of a modified LV-type predator-prey system with Michaelis-Menten-type harvesting of predators where predators adopt cooperation strategy during hunting.The ecologically feasible steady states of the system and their asymptotic stabilities are explored.The local codimension one bifurcations,viz.transcritical,saddle-node and Hopf bifurcations,that emerge in the system are investigated.Sotomayors approach is utilized to show the appearance of transcritical bifurcation and saddle-node bifurcation.A backward Hopfbifurcation is detected when the harvesting effort is increased,which destabilizes the system by generating periodic solutions.The stability nature of the Hopf-bifurcating periodic orbits is determined by computing the first Lyapunov coefficient.Our analyses revealed that above a threshold value of the harvesting effort promotes the coexistence of both populations.Similar periodic solutions of the system are also observed when the conversion efficiency rate or the hunting cooperation rate is increased.We have also explored codimension two bifurcations viz.the generalized Hopf and the Bogdanov-Takens bifurcation exhibit by the system.To visualize the dynamical behavior of the system,numerical simulations are conducted using an ecologically plausible parameter set.The existence of the bionomic equilibrium of the model is analyzed.Moreover,an optimal harvesting policy for the proposed model is derived by considering harvesting effort as a control parameter with the help of Pontryagins maximum principle.
基金supported by National Natural Science Foundation of China (No.60974004)Science Foundation of Ministry of Housing and Urban-Rural Development (No.2011-K5-31)
文摘The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.
文摘The dynamics of a single strain HIV model is studied. The basic reproduction number R0 used as a bifurcation parameter shows that the system undergoes transcritical and saddle-node bifurcations. The usual threshold unit value of R0 does not completely determine the eradication of the disease in an HIV infected person. In particular, a sub-threshold value Rc is established which determines the system's number of endemic states: multiple if Rc 〈 Ro 〈 1, only one if Rc=Ro = 1, and none if R0 〈 Rc 〈 1.
文摘Burgers equation is reduced into a first-order ordinary differential equation by using travelling wave transformation and it has typical bifurcation characteristics. We can obtain many exact solutions of the Burgers equation, discuss its transcritical bifurcation and control dynamical behaviours by extending the stable region. The transcritical bifurcation exists in the (2 + 1)-dimensional Burgers equation.