Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading...Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.展开更多
Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved...Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.展开更多
The transcription activator-like effector nuclease (TALEN) technique combined with the somatic cel nuclear transfer (SCNT) method has been successfuly applied for creating geneticaly modiifed pigs. However, method...The transcription activator-like effector nuclease (TALEN) technique combined with the somatic cel nuclear transfer (SCNT) method has been successfuly applied for creating geneticaly modiifed pigs. However, methods for isolating cels with bialelic indels requires further improvement because of the relatively low enrichment efifciency of mutated somatic cels. Moreover, little is known regarding the off-target effects of the TALEN system and the heredity of TALEN-modiifed pigs. In this study, an efifcient method to increase the enrichment efifciency of TALEN-mediated bialelic knockout (KO) cels was established, and corresponding geneticaly modiifed pigs with the expected genotype were generated whose off-target effect, fertility and heredity characteristics were aslo evaluated. Two TALEN pairs were constructed to target the porcine α-1,3-galactosyltransferase (GGTA1) gene locus. TALEN mRNA was transfected into the ear ifbroblasts folowed by the enrichment of α-Gal nul cels of minipigs using isolectin B4 (IB4) lectin and magnetic beads. A total of 115 cel colonies were formed and validated to beGGTA1 KO cels by sequencing and 10 bialelic KO cel colonies were used as nuclear donors for SCNT. ThirtyGGTA1 bialelic KO piglets were successfuly delivered and grew normaly. Seventeen potential off-target sites were investigated, and no off-target events were detected in the live piglets. To determine the fertility and heredity characteristics of TALEN-modiifed pigs, 10 mature founders were mated with each other and the mutations were determined to be transmitted to the F1 piglets. We established a robust and safe technology for developing geneticaly modiifed pig lines with expected genotypes for agricultural breeding and biomedical application.展开更多
文摘Gene editing has recently emerged as a promising technology to engineer genetic modifications precisely in the genome to achieve long-term relief from corneal disorders.Recent advances in the molecular biology leading to the development of clustered regularly interspaced short palindromic repeats(CRISPRs) and CRISPR-associated systems,zinc finger nucleases and transcription activator like effector nucleases have ushered in a new era for high throughput in vitro and in vivo genome engineering.Genome editing can be successfully used to decipher complex molecular mechanisms underlying disease pathophysiology,develop innovative next generation gene therapy,stem cell-based regenerative therapy,and personalized medicine for corneal and other ocular diseases.In this review we describe latest developments in the field of genome editing,current challenges,and future prospects for the development of personalized genebased medicine for corneal diseases.The gene editing approach is expected to revolutionize current diagnostic and treatment practices for curing blindness.
文摘Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
基金supported by the National Basic Research Program of China(973 Program)(2015CB554103 and 2011CBA01004)
文摘The transcription activator-like effector nuclease (TALEN) technique combined with the somatic cel nuclear transfer (SCNT) method has been successfuly applied for creating geneticaly modiifed pigs. However, methods for isolating cels with bialelic indels requires further improvement because of the relatively low enrichment efifciency of mutated somatic cels. Moreover, little is known regarding the off-target effects of the TALEN system and the heredity of TALEN-modiifed pigs. In this study, an efifcient method to increase the enrichment efifciency of TALEN-mediated bialelic knockout (KO) cels was established, and corresponding geneticaly modiifed pigs with the expected genotype were generated whose off-target effect, fertility and heredity characteristics were aslo evaluated. Two TALEN pairs were constructed to target the porcine α-1,3-galactosyltransferase (GGTA1) gene locus. TALEN mRNA was transfected into the ear ifbroblasts folowed by the enrichment of α-Gal nul cels of minipigs using isolectin B4 (IB4) lectin and magnetic beads. A total of 115 cel colonies were formed and validated to beGGTA1 KO cels by sequencing and 10 bialelic KO cel colonies were used as nuclear donors for SCNT. ThirtyGGTA1 bialelic KO piglets were successfuly delivered and grew normaly. Seventeen potential off-target sites were investigated, and no off-target events were detected in the live piglets. To determine the fertility and heredity characteristics of TALEN-modiifed pigs, 10 mature founders were mated with each other and the mutations were determined to be transmitted to the F1 piglets. We established a robust and safe technology for developing geneticaly modiifed pig lines with expected genotypes for agricultural breeding and biomedical application.