With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ...With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.展开更多
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o...The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model.展开更多
The aerodynamic braking has become an attractive option with the continuous improvement of train speeds.The study aims to obtain the optimal opening angles of multiple sets of braking plates for the maglev train.There...The aerodynamic braking has become an attractive option with the continuous improvement of train speeds.The study aims to obtain the optimal opening angles of multiple sets of braking plates for the maglev train.Therefore,a multi-objective optimization method is adopted to decrease the series interference effect between multiple sets of plates.And the computational fluid dynamics method,based on the 3-D,RANS method and SST k-ωturbulence model,is employed to get the initial and iterative data.Firstly,the aerodynamic drag and lift are analysed,as well as the pressure and velocity distribution of the flow field with the braking plates open at 75°.Then,the aerodynamic forces of each braking plate pre and post optimization are compared.Finally,the correlation between each set of braking plates and the optimized objective is analysed.It is found from the results that the aerodynamic drag and lift of the train have significant differences with or without multiple sets of braking plates.Additionally,the design variable corresponding to the number of iterations of 89 is taken as the rela-tive optimal solution,and its opening angles of braking plates(B2-B5)are 87.41°,87.85°,87.41°,and 89.88°,respectively.The results are expected to provide a reference for the opening angles design scheme for the future engineering application of high-speed maglev train braking technology.展开更多
The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider m...The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.展开更多
Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fau...Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fault sensitive feature subset is meaningful for fault diagnosis of helicopter planetary gear train.According to actual situation,this paper proposed a multi-criteria fusion feature selection algorithm (MCFFSA) to identify an optimal feature subset from the highdimensional original feature space.In MCFFSA,a fault feature set of multiple domains,including time domain,frequency domain and wavelet domain,is first extracted from the raw vibration dataset.Four targeted criteria are then fused by multi-objective evolutionary algorithm based on decomposition (MOEA/D) to find Proto-efficient subsets,wherein two criteria for measuring diagnostic performance are assessed by sparse Bayesian extreme learning machine (SBELM).Further,Fmeasure is adopted to identify the optimal feature subset,which was employed for subsequent fault diagnosis.The effectiveness of MCFFSA is validated through six fault recognition datasets from a real helicopter transmission platform.The experimental results illustrate the superiority of combination of MOEA/D and SBELM in MCFFSA,and comparative analysis demonstrates that the optimal feature subset provided by MCFFSA can achieve a better diagnosis performance than other algorithms.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50823004)the National Key Technology R&D Program of China (No. 2009BAG12A01-C09)+1 种基金the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities, China
文摘With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.
基金supported by the Sichuan Science and Technology Program(2023JDRC0062)National Natural Science Foundation of China(12172308)Project of State Key Laboratory of Traction Power(2023TPL-T05).
文摘The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model.
基金the National Natural Science Foundation of China(52022086)the Sichuan Science and Technology Program(22CXTD0070)+1 种基金the Chinese Academy of Engineering Consulting Research Project(2022-XBZD-20)the Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(KF2022-13).
文摘The aerodynamic braking has become an attractive option with the continuous improvement of train speeds.The study aims to obtain the optimal opening angles of multiple sets of braking plates for the maglev train.Therefore,a multi-objective optimization method is adopted to decrease the series interference effect between multiple sets of plates.And the computational fluid dynamics method,based on the 3-D,RANS method and SST k-ωturbulence model,is employed to get the initial and iterative data.Firstly,the aerodynamic drag and lift are analysed,as well as the pressure and velocity distribution of the flow field with the braking plates open at 75°.Then,the aerodynamic forces of each braking plate pre and post optimization are compared.Finally,the correlation between each set of braking plates and the optimized objective is analysed.It is found from the results that the aerodynamic drag and lift of the train have significant differences with or without multiple sets of braking plates.Additionally,the design variable corresponding to the number of iterations of 89 is taken as the rela-tive optimal solution,and its opening angles of braking plates(B2-B5)are 87.41°,87.85°,87.41°,and 89.88°,respectively.The results are expected to provide a reference for the opening angles design scheme for the future engineering application of high-speed maglev train braking technology.
文摘The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.
基金co-supported by the Equipment Pre-research Foundation Project of China (No. JZX7Y20190243016301)Helicopter Transmission Technology Key Laboratory Foundation of China (No. KY-52-2018-0024)the Fundamental Research Funds for the Central Universities & Funding of Jiangsu Innovation Program for Graduate Education under Grant (No. KYLX16_0336)
文摘Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fault sensitive feature subset is meaningful for fault diagnosis of helicopter planetary gear train.According to actual situation,this paper proposed a multi-criteria fusion feature selection algorithm (MCFFSA) to identify an optimal feature subset from the highdimensional original feature space.In MCFFSA,a fault feature set of multiple domains,including time domain,frequency domain and wavelet domain,is first extracted from the raw vibration dataset.Four targeted criteria are then fused by multi-objective evolutionary algorithm based on decomposition (MOEA/D) to find Proto-efficient subsets,wherein two criteria for measuring diagnostic performance are assessed by sparse Bayesian extreme learning machine (SBELM).Further,Fmeasure is adopted to identify the optimal feature subset,which was employed for subsequent fault diagnosis.The effectiveness of MCFFSA is validated through six fault recognition datasets from a real helicopter transmission platform.The experimental results illustrate the superiority of combination of MOEA/D and SBELM in MCFFSA,and comparative analysis demonstrates that the optimal feature subset provided by MCFFSA can achieve a better diagnosis performance than other algorithms.