Recent innovations in transport technology are now providing mobility that is cheaper, autonomous, electric, and with improved ride quality. While much of the world’s attention has been on how this can be applied to ...Recent innovations in transport technology are now providing mobility that is cheaper, autonomous, electric, and with improved ride quality. While much of the world’s attention has been on how this can be applied to cars, there have been rapid adoption of these and other technologies in High Speed Rail and Metro Rail systems that run between and across cities. This paper shows how such innovations have now been applied to create the next generation of urban transit system called a Trackless Tram. Trackless Trams are effectively the same as traditional light rail except they run on rubber tyres avoiding disruption from construction for Light Rail, but they retain the electric propulsion (with batteries) and have high ride quality due to rail-type bogies, stabilization technologies and precision tracking from the autonomous optical guidance systems—with infrastructure costs reduced to as low as one tenth of a Light Rail system. As with Light Rail, a Trackless Tram System provides a rapid transit option that can harness the fixed route assurance necessary to unlock new land value appreciation that can be leveraged to contribute to construction and running costs whilst creating urban regeneration. The paper considers the niche for Trackless Trams in cities along with its potential for city shaping through the creation of urban re-development along corridors. The paper suggests that the adoption of Trackless Tram Systems is likely to grow rapidly as a genuine alternative to car and bus systems, supplementing and extending the niche occupied by Light Rail Transit (LRT). This appears to be feasible in any medium-sized or larger city, especially in emerging and developing economies, and case studies are outlined for Perth and Thimpu to illustrate its potential.展开更多
Rapid innovation and development of modern technology has brought about the opportunity for developing economies to technological leapfrog. In particular, rather than going through all the learning curve and costly pr...Rapid innovation and development of modern technology has brought about the opportunity for developing economies to technological leapfrog. In particular, rather than going through all the learning curve and costly process <span style="font-family:Verdana;">experienced by developed countries, emerging economies instead can tak</span><span style="font-family:Verdana;">e advantage of the opportunities presented by technological shifts. However, inadequate infrastructure is the cause of most challenges that these developing economies presently face. Energy, road, transport and telecommunication networks are the most critical infrastructure needed to drive a sustainable </span><span style="font-family:Verdana;">development and economic growth. As seen in many emerging economies, </span><span style="font-family:Verdana;">small private cars are still dominating the public transport sector, even though </span><span style="font-family:Verdana;">it is evident that they are congesting the poorly managed and crumbling road </span><span style="font-family:Verdana;">infrastructure. Most emerging economies’ cities are currently experiencing rapi</span><span style="font-family:Verdana;">d urbanisation that is leading to massive population explosion. These rapidly growing cities should adopt latest technologies, such as Trackless Trams Systems (TTS). There is no doubt that TTS can probably help in dealing with most of the transport problems experienced in rapidly growing urban areas </span><span style="font-family:Verdana;">within emerging economies. This paper seeks to explore the opportunities</span><span style="font-family:Verdana;"> presented by TTS to bring about the needed technological leapfrogging for the developing countries that are resource constrained to build modern and expensive mass public transport infrastructure. An ideal example of a recent successful technological leapfrog in emerging economies is the low-cost mo</span><span style="font-family:Verdana;">bile phones and increasingly expanding wireless access 展开更多
Zimbabwe has serious financial constraints so the only viable option to procure infrastructure is through engaging the private sector in public-private partnerships to enhance the chances of successfully undertaking p...Zimbabwe has serious financial constraints so the only viable option to procure infrastructure is through engaging the private sector in public-private partnerships to enhance the chances of successfully undertaking public projects like sustainable transport. This study creates the basis for a potential public-private partnership with a trackless tram/solar energy project in Bulawayo which has multiple advantages for sustainable development goals. It identifies six other projects in Zimbabwe that can provide some guidance for developing an appropriate PPP that could assist procure such infrastructure. The projects are drawn from the three critical sectors of the economy: power generation, highways/transport, and water/sanitation. Empirical investigations of these projects reveal the effectiveness of the PPP concept to deliver infrastructure for emerging economies. This suggests an ideal PPP arrangement that increases the likelihood of getting projects like the proposed sustainable transport project in Bulawayo implemented quickly and efficiently, especially if formulated to incorporate the project’s local socio-economic dynamics.展开更多
文摘Recent innovations in transport technology are now providing mobility that is cheaper, autonomous, electric, and with improved ride quality. While much of the world’s attention has been on how this can be applied to cars, there have been rapid adoption of these and other technologies in High Speed Rail and Metro Rail systems that run between and across cities. This paper shows how such innovations have now been applied to create the next generation of urban transit system called a Trackless Tram. Trackless Trams are effectively the same as traditional light rail except they run on rubber tyres avoiding disruption from construction for Light Rail, but they retain the electric propulsion (with batteries) and have high ride quality due to rail-type bogies, stabilization technologies and precision tracking from the autonomous optical guidance systems—with infrastructure costs reduced to as low as one tenth of a Light Rail system. As with Light Rail, a Trackless Tram System provides a rapid transit option that can harness the fixed route assurance necessary to unlock new land value appreciation that can be leveraged to contribute to construction and running costs whilst creating urban regeneration. The paper considers the niche for Trackless Trams in cities along with its potential for city shaping through the creation of urban re-development along corridors. The paper suggests that the adoption of Trackless Tram Systems is likely to grow rapidly as a genuine alternative to car and bus systems, supplementing and extending the niche occupied by Light Rail Transit (LRT). This appears to be feasible in any medium-sized or larger city, especially in emerging and developing economies, and case studies are outlined for Perth and Thimpu to illustrate its potential.
文摘Rapid innovation and development of modern technology has brought about the opportunity for developing economies to technological leapfrog. In particular, rather than going through all the learning curve and costly process <span style="font-family:Verdana;">experienced by developed countries, emerging economies instead can tak</span><span style="font-family:Verdana;">e advantage of the opportunities presented by technological shifts. However, inadequate infrastructure is the cause of most challenges that these developing economies presently face. Energy, road, transport and telecommunication networks are the most critical infrastructure needed to drive a sustainable </span><span style="font-family:Verdana;">development and economic growth. As seen in many emerging economies, </span><span style="font-family:Verdana;">small private cars are still dominating the public transport sector, even though </span><span style="font-family:Verdana;">it is evident that they are congesting the poorly managed and crumbling road </span><span style="font-family:Verdana;">infrastructure. Most emerging economies’ cities are currently experiencing rapi</span><span style="font-family:Verdana;">d urbanisation that is leading to massive population explosion. These rapidly growing cities should adopt latest technologies, such as Trackless Trams Systems (TTS). There is no doubt that TTS can probably help in dealing with most of the transport problems experienced in rapidly growing urban areas </span><span style="font-family:Verdana;">within emerging economies. This paper seeks to explore the opportunities</span><span style="font-family:Verdana;"> presented by TTS to bring about the needed technological leapfrogging for the developing countries that are resource constrained to build modern and expensive mass public transport infrastructure. An ideal example of a recent successful technological leapfrog in emerging economies is the low-cost mo</span><span style="font-family:Verdana;">bile phones and increasingly expanding wireless access
文摘Zimbabwe has serious financial constraints so the only viable option to procure infrastructure is through engaging the private sector in public-private partnerships to enhance the chances of successfully undertaking public projects like sustainable transport. This study creates the basis for a potential public-private partnership with a trackless tram/solar energy project in Bulawayo which has multiple advantages for sustainable development goals. It identifies six other projects in Zimbabwe that can provide some guidance for developing an appropriate PPP that could assist procure such infrastructure. The projects are drawn from the three critical sectors of the economy: power generation, highways/transport, and water/sanitation. Empirical investigations of these projects reveal the effectiveness of the PPP concept to deliver infrastructure for emerging economies. This suggests an ideal PPP arrangement that increases the likelihood of getting projects like the proposed sustainable transport project in Bulawayo implemented quickly and efficiently, especially if formulated to incorporate the project’s local socio-economic dynamics.