期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
无人机自主精准降落的跟踪算法研究
1
作者 陈潇 徐曙 +1 位作者 钟灿堂 赵晓丹 《自动化仪表》 CAS 2024年第9期65-69,75,共6页
为了提高无人机自主精准降落的准确性、增强无人机自主着陆的适应性,研究了一种新式无人机跟踪算法。首先,对无人机与着陆目标确定相对位置的计算过程和原理进行分析,总结出传统着陆目标跟踪算法的缺点。然后,创新性地将跟踪学习检测(T... 为了提高无人机自主精准降落的准确性、增强无人机自主着陆的适应性,研究了一种新式无人机跟踪算法。首先,对无人机与着陆目标确定相对位置的计算过程和原理进行分析,总结出传统着陆目标跟踪算法的缺点。然后,创新性地将跟踪学习检测(TLD)算法与目标跟踪中的核化相关滤波(KCF)算法相结合,利用KCF算法的优势优化TLD算法,得到TLD+KCF目标跟踪算法。最后,提出基于无人机降落的优化算法,并设置对照组验证算法性能。对比结果表明,所提算法的准确率和成功率超过了对比算法。该算法精度高、稳定性强,可实现无人机自主精准降落。该研究有助于提高无人机自主精准降落的准确性。 展开更多
关键词 无人机 自主降落 控制系统 跟踪学习检测算法 核化相关滤波算法 目标追踪
下载PDF
基于改进TLD的自动目标跟踪方法 被引量:8
2
作者 易诗 林凡强 周姝颖 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第6期892-896,共5页
视觉跟踪一直是机器视觉研究热点,TLD(tracking-learning-detection)算法是近年来出现的一种高效的视觉跟踪算法,针对TLD算法中Lucas-Kanade(LK)光流法无法有效跟踪物体快速移动和尺度变化的问题,采用金字塔光流法对TLD算法进行改进。... 视觉跟踪一直是机器视觉研究热点,TLD(tracking-learning-detection)算法是近年来出现的一种高效的视觉跟踪算法,针对TLD算法中Lucas-Kanade(LK)光流法无法有效跟踪物体快速移动和尺度变化的问题,采用金字塔光流法对TLD算法进行改进。并将所跟踪物体形心作为图像定位参考点,提取物体定位信息,通过定位信息运用比例-积分-微分(proportion-integral-derivative,PID)控制算法控制摄像头舵机云台转向,使摄像头快速、灵活、精确地自动跟踪指定物体。通过系统测试,与传统TLD算法对比,采用金字塔光流法改进的TLD目标跟踪算法在跟踪目标发生光照变化、尺度变化等情况时,具有更加优良的跟踪性能,准确将跟踪目标形心位置提供给控制部分,控制算法高效灵活,在获取信息后精确、快速地控制摄像头方位,使其正对跟踪目标。该系统对目标跟踪技术、安防技术、自动瞄准系统具有重大意义。 展开更多
关键词 tld算法 金字塔光流法 图像定位 比例-积分-微分(PID)控制算法
下载PDF
检测区域动态调整的TLD目标跟踪算法 被引量:4
3
作者 曲海成 单晓晨 +1 位作者 孟煜 刘万军 《计算机应用》 CSCD 北大核心 2015年第10期2985-2989,共5页
针对经典跟踪-学习-检测(TLD)目标跟踪算法由于检测区域过大而导致的检测时间过长及对相似目标跟踪处理效果不理想的问题,提出一种检测区域可动态自适应调整的方法——TLD-DO。该方法利用两次Kalman滤波加速度矫正预测的检测区域优化... 针对经典跟踪-学习-检测(TLD)目标跟踪算法由于检测区域过大而导致的检测时间过长及对相似目标跟踪处理效果不理想的问题,提出一种检测区域可动态自适应调整的方法——TLD-DO。该方法利用两次Kalman滤波加速度矫正预测的检测区域优化算法DKF,通过缩小TLD检测器检测范围,以达到在跟踪精度略有提升的情况下提高跟踪速度的目的;同时此方法可排除画面内相似目标的干扰,提高在含有相似目标的复杂背景下目标跟踪的准确性。实验结果表明:TLD-DO算法在处理不同视频与跟踪目标时,检测速度有1.31-3.19倍提升;对含有相似目标干扰情况下,跟踪效果明显优于原TLD算法;对目标抖动及失真情况有较高的鲁棒性。 展开更多
关键词 目标跟踪 tld算法 检测区域 KALMAN滤波 跟踪速度
下载PDF
在线学习机制下的Snake轮廓跟踪 被引量:4
4
作者 沈宋衍 陈莹 《计算机工程》 CAS CSCD 北大核心 2015年第4期195-198,共4页
针对复杂环境下非刚体目标轮廓跟踪存在跟踪失败的问题,提出一种基于在线学习的Snake模型及其轮廓跟踪算法。利用跟踪-学习-检测(TLD)机制实现目标快速跟踪,通过跟踪结果在线更新Snake模型约束,进而提高目标轮廓跟踪的准确性。初始化阶... 针对复杂环境下非刚体目标轮廓跟踪存在跟踪失败的问题,提出一种基于在线学习的Snake模型及其轮廓跟踪算法。利用跟踪-学习-检测(TLD)机制实现目标快速跟踪,通过跟踪结果在线更新Snake模型约束,进而提高目标轮廓跟踪的准确性。初始化阶段,在Grab Cut算法的基础上,将待跟踪目标分成若干个子块,并在后续跟踪过程中,利用TLD实现各子目标的定位跟踪,形成目标的轮廓置信图。同时针对各子目标提取特征,产生正负样本,更新各子目标跟踪模型。应用置信图建立参数化Snake模型的约束条件,进而得到目标轮廓。实验结果表明,该算法能适应光暗变化与较为复杂坏境下的跟踪,并获得精确的轮廓。 展开更多
关键词 轮廓跟踪 GrabCut算法 SNAKE模型 跟踪-学习-检测算法 在线学习 置信图
下载PDF
引入特征重检的抗遮挡目标跟踪方法研究 被引量:3
5
作者 周维 陈听海 邱宝鑫 《计算机工程与应用》 CSCD 北大核心 2020年第11期179-184,共6页
针对视觉目标跟踪的遮挡问题,在TLD算法的基础上,引入特征重检环节,解决发生遮挡时因目标外观相似、背景聚类造成错判,提出了一种基于特征重检的抗遮挡目标跟踪研究方法(TLD-D),采用跟踪、检测、学习、再检测的策略。跟踪与检测相结合,... 针对视觉目标跟踪的遮挡问题,在TLD算法的基础上,引入特征重检环节,解决发生遮挡时因目标外观相似、背景聚类造成错判,提出了一种基于特征重检的抗遮挡目标跟踪研究方法(TLD-D),采用跟踪、检测、学习、再检测的策略。跟踪与检测相结合,对锁定的目标进行学习,获取目标最新的外观特征;当发生遮挡时,则启用特征重检环节,提取遮挡过程的"开始发生遮挡"和"遮挡结束"两个关键帧,然后在特征重检环节选用SIFT特征进行双向匹配标定目标,确保重新标定的目标为原被遮挡的跟踪目标,即"再检测"。OTB基准集上实验结果表明,与TLD算法、同类TLD改进算法以及其他经典跟踪算法相比较,TLD-D算法抗遮挡能力更强,鲁棒性更强,能够对目标长时间稳定跟踪。 展开更多
关键词 目标跟踪 抗遮挡 特征重检 tld算法 双向匹配
下载PDF
基于卷积神经网络优化TLD运动手势跟踪算法 被引量:2
6
作者 王民 李泽洋 +1 位作者 王纯 石新源 《计算机工程与应用》 CSCD 北大核心 2019年第9期151-156,共6页
针对TLD(Tracking-Learning-Detection)算法在光照变化不均、遮挡严重、跟踪目标模糊等情况下会出现跟踪失败的问题,提出一种基于卷积神经网络优化TLD运动手势跟踪算法。选取手势特征作正样本,其背景作负样本,获取手势HOG特征并投入到... 针对TLD(Tracking-Learning-Detection)算法在光照变化不均、遮挡严重、跟踪目标模糊等情况下会出现跟踪失败的问题,提出一种基于卷积神经网络优化TLD运动手势跟踪算法。选取手势特征作正样本,其背景作负样本,获取手势HOG特征并投入到卷积神经网络中加以训练,得到手势检测分类器,从而确定目标手势区域,实现手势的自动识别;再利用TLD算法对手势进行跟踪与学习,对正负样本进行估计检测并实时校正,同时运用SURF特征匹配更新跟踪器。实验结果验证,该算法对比TLD经典算法跟踪精度提高了4.24%,增强了运动手势的跟踪效果,相比经典跟踪算法拥有更高鲁棒性。 展开更多
关键词 卷积神经网络 tld算法 手势跟踪 HOG特征 SURF特征
下载PDF
基于时间上下文跟踪-学习-检测的指尖跟踪方法 被引量:1
7
作者 侯荣波 康文雄 +2 位作者 房育勋 黄荣恩 徐伟钊 《计算机应用》 CSCD 北大核心 2016年第5期1371-1377,共7页
针对在基于视频的空中签名认证系统中,现有方法无法满足指尖跟踪的准确性、实时性和鲁棒性要求的问题,在对比研究目前常用的多种跟踪方法的基础上,提出一种基于时间上下文的跟踪-学习-检测(TLD)方法。在原始TLD算法的基础上引入时间上... 针对在基于视频的空中签名认证系统中,现有方法无法满足指尖跟踪的准确性、实时性和鲁棒性要求的问题,在对比研究目前常用的多种跟踪方法的基础上,提出一种基于时间上下文的跟踪-学习-检测(TLD)方法。在原始TLD算法的基础上引入时间上下文信息,即相邻两帧间指尖运动具有连续性的先验知识,自适应地缩小检测和跟踪的搜索范围,以提高跟踪的速度。对12组公开的1组自录的视频序列的实验结果表明,改进后的TLD算法能够准确地跟踪指尖,并且跟踪速度达到43帧/秒;与原始TLD跟踪算法相比,准确率提高了15%,跟踪速度至少提高1倍,达到了指尖跟踪的准确性、实时性和鲁棒性要求。 展开更多
关键词 目标跟踪 指尖跟踪 跟踪-学习-检测算法 时间上下文 人机交互
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部