In order to achieve precise,robust autonomous guidance and control of a tracked vehicle,a kinematic model with longitudinal and lateral slip is established,Four different nonlinear filters are used to estimate both st...In order to achieve precise,robust autonomous guidance and control of a tracked vehicle,a kinematic model with longitudinal and lateral slip is established,Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly.The first filter is the well-known extended Kalman filter.The second filter is an unscented version of the Kalman filter.The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution.The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies.The four different approaches have different complexities,behavior and advantages that are surveyed and compared.展开更多
With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seaflo...With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.展开更多
Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a cer...Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.展开更多
A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a tr...A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.展开更多
Robots with transformable tracked mechanisms are widely used in complex terrains because of their high adaptability,and many studies on novel locomotion mechanisms have been conducted to make them able to climb higher...Robots with transformable tracked mechanisms are widely used in complex terrains because of their high adaptability,and many studies on novel locomotion mechanisms have been conducted to make them able to climb higher obstacles.Developing underactuated transformable mechanisms for tracked robots could decrease the number of actuators used while maintaining the flexibility and obstacle-crossing capability of these robots,and increasing their cost performance.Therefore,the underactuated tracked robots have appreciable research potential.In this paper,a novel tracked robot with a newly proposed underactuated revolute‒revolute‒prismatic(RRP)transformable mechanism,which is inspired by the sit-up actions of humans,was developed.The newly proposed tracked robot has only two actuators installed on the track pulleys for moving and does not need extra actuators for transformations.Instead,it could concentrate the track belt’s tension toward one side,and the unbalanced tension would drive the linkage mechanisms to change its configuration.Through this method,the proposed underactuated design could change its external shape to create support points with the terrain and move its center of mass actively at the same time while climbing obstacles or crossing other kinds of terrains,thus greatly improving the climbing capability of the robot.The geometry and kinematic relationships of the robot and the crossing strategies for three kinds of typical obstacles are discussed.On the basis of such crossing motions,the parameters of links in the robot are designed to make sure the robot has sufficient stability while climbing obstacles.Terrain-crossing dynamic simulations were run and analyzed to prove the feasibility of the robot.A prototype was built and tested.Experiments show that the proposed robot could climb platforms with heights up to 33.3%of the robot’s length or cross gaps with widths up to 43.5%of the robot’s length.展开更多
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a...In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.展开更多
In order to improve the adaptability of the tracked vehicle in the road and strengthen the grip of the tracked vehicle, a track surface adaptive mechanism was provided. In theory, it has been proved practically. Meanw...In order to improve the adaptability of the tracked vehicle in the road and strengthen the grip of the tracked vehicle, a track surface adaptive mechanism was provided. In theory, it has been proved practically. Meanwhile, RecurDyn, which is a multi-body kinematics software, was used to build a multi-body soft hybrid model, based on structure, elasticity, linear damping adaptive tracked vehicle;meanwhile the model was used to carry on the kinematics simulation. Through the comparison between simulated motion trail and that of traditional motion trail, this paper analyzed the deviation of the motion trail and also simulated the motion trail of the warped surface so as to test the adaptive ability of the mechanism. According to the results, the adaptive mechanism was equipped with great surface adaptability. It can also adapt to the complex warped surface, and enjoy a damping effect.展开更多
While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous ...While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous navigation and control purposes especially in outdoor environments. In this paper the robust point stabilization problem of a tracked mobile robot is discussed in the presence of track slipping, which can be treated as model perturbation that violates the pure nonholonomic constraints. The kinematic model of the tracked vehicle is created, in which the slipping is assumed to be a time-varying pa- rameter under certain assumptions of track-soil interaction. By transforming the original system to the special chained form of nonholonomic system, the integrator backstepping procedure with a state-scaling technique is used to construct the controller to stabilize the system at the kinematic level. The global exponential stability of the final system can be guaranteed by Lyapunov theory. Simulation results with different initial states and slipping parameters demonstrate the fast convergence, robustness and insensitivity to the initial state of the proposed method.展开更多
The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynam...The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynamic simulation. The obtained results have demonstrated that the simulation method has the advantage of high efficiency, more convenience and more insight into the dynamical behavior of the system.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 program,No.2006AA04Z215).
文摘In order to achieve precise,robust autonomous guidance and control of a tracked vehicle,a kinematic model with longitudinal and lateral slip is established,Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly.The first filter is the well-known extended Kalman filter.The second filter is an unscented version of the Kalman filter.The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution.The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies.The four different approaches have different complexities,behavior and advantages that are surveyed and compared.
基金Project(DYXM-115-04-02-01) supported by the National Deep-sea Technology Project of Development and Research, ChinaProject(2011QNZT058) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(51105386) supported by the National Natural Science Foundation of China
文摘With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.
基金Projects(51274251,11502226)supported by the National Natural Science Foundation of China
文摘Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.
文摘A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2022JBZY026).
文摘Robots with transformable tracked mechanisms are widely used in complex terrains because of their high adaptability,and many studies on novel locomotion mechanisms have been conducted to make them able to climb higher obstacles.Developing underactuated transformable mechanisms for tracked robots could decrease the number of actuators used while maintaining the flexibility and obstacle-crossing capability of these robots,and increasing their cost performance.Therefore,the underactuated tracked robots have appreciable research potential.In this paper,a novel tracked robot with a newly proposed underactuated revolute‒revolute‒prismatic(RRP)transformable mechanism,which is inspired by the sit-up actions of humans,was developed.The newly proposed tracked robot has only two actuators installed on the track pulleys for moving and does not need extra actuators for transformations.Instead,it could concentrate the track belt’s tension toward one side,and the unbalanced tension would drive the linkage mechanisms to change its configuration.Through this method,the proposed underactuated design could change its external shape to create support points with the terrain and move its center of mass actively at the same time while climbing obstacles or crossing other kinds of terrains,thus greatly improving the climbing capability of the robot.The geometry and kinematic relationships of the robot and the crossing strategies for three kinds of typical obstacles are discussed.On the basis of such crossing motions,the parameters of links in the robot are designed to make sure the robot has sufficient stability while climbing obstacles.Terrain-crossing dynamic simulations were run and analyzed to prove the feasibility of the robot.A prototype was built and tested.Experiments show that the proposed robot could climb platforms with heights up to 33.3%of the robot’s length or cross gaps with widths up to 43.5%of the robot’s length.
文摘In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.
文摘In order to improve the adaptability of the tracked vehicle in the road and strengthen the grip of the tracked vehicle, a track surface adaptive mechanism was provided. In theory, it has been proved practically. Meanwhile, RecurDyn, which is a multi-body kinematics software, was used to build a multi-body soft hybrid model, based on structure, elasticity, linear damping adaptive tracked vehicle;meanwhile the model was used to carry on the kinematics simulation. Through the comparison between simulated motion trail and that of traditional motion trail, this paper analyzed the deviation of the motion trail and also simulated the motion trail of the warped surface so as to test the adaptive ability of the mechanism. According to the results, the adaptive mechanism was equipped with great surface adaptability. It can also adapt to the complex warped surface, and enjoy a damping effect.
基金Acknowledgments This work is supported by the National Natural Science Foundation of China (Grant No. 61005092).
文摘While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous navigation and control purposes especially in outdoor environments. In this paper the robust point stabilization problem of a tracked mobile robot is discussed in the presence of track slipping, which can be treated as model perturbation that violates the pure nonholonomic constraints. The kinematic model of the tracked vehicle is created, in which the slipping is assumed to be a time-varying pa- rameter under certain assumptions of track-soil interaction. By transforming the original system to the special chained form of nonholonomic system, the integrator backstepping procedure with a state-scaling technique is used to construct the controller to stabilize the system at the kinematic level. The global exponential stability of the final system can be guaranteed by Lyapunov theory. Simulation results with different initial states and slipping parameters demonstrate the fast convergence, robustness and insensitivity to the initial state of the proposed method.
文摘The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynamic simulation. The obtained results have demonstrated that the simulation method has the advantage of high efficiency, more convenience and more insight into the dynamical behavior of the system.