By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of ou...By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.展开更多
Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studi...Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studied using magnetic tweezers combined with Brownian dynamics simulations. The experimental results revealed a surprising nonmonotonic dependence of the unfolding rate on the force applied under strong adhesion conditions, resembling the catchbond behavior reported in the field of ligand-receptor interactions. Simulation results showed that the different unfolding pathways of DNA condensate under large forces derive from the force-dependent deformation of the DNA toroid, which explains the catch-bond behavior of DNA condensate in the magnetic tweezers experiments. These results challenge the universality of the regular toroidal DNA unwrapping mechanism and provide the most complete description to date of multivalent cation-dependent DNA unwrapping under tension.展开更多
States of excess correlation have previously been achieved at macroscopic levels by simultaneously exposing two non-local spaces to weak electromagnetic field patterns, generated by toroids, presented in a sequence su...States of excess correlation have previously been achieved at macroscopic levels by simultaneously exposing two non-local spaces to weak electromagnetic field patterns, generated by toroids, presented in a sequence such that the angular velocity of the field is modulated by changes in frequency over time. Here we systematically investigated effects upon the local space at the center of a single toroid generating the excess correlation sequence. The results indicated that a 1 - 5 nT diminishment in field intensity on the Y- or east-west axis was characteristic of the excess correlation sequence which was not indicated for control conditions. Statistically significant shifts in field intensity approximately 40 to 60 s before the onset of the first field associated with the excess correlation sequence indicated a temporally non-linear effect which converged upon the ratio of g and the rotational velocity of the Earth for the local space where Coriolis-like forces were inferred. Intensity shifts associated with the excess correlation sequence but not controls were quantitatively convergent upon parameters of the hydrogen line (1.42 GHz). Implications for these findings were discussed in relation to Mach’s principle and, in particular, to the electron as a physical unit which was found to relate classical and quantum systems.展开更多
基金National Key R&D Program of China(2017YFA0303703,2016YFA0302500)National Natural Science Foundation of China(NSFC)(61435007,11574144,61475099)+1 种基金Natural Science Foundation of Jiangsu Province,China(BK20150015)Fundamental Research Funds for the Central Universities(021314380086)
文摘By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1110434111474346+3 种基金11274374and 61275192)the National Key Basic Research Program of China(Grant No.2013CB837200)the Mechanobiology Institute at National University of Singapore
文摘Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studied using magnetic tweezers combined with Brownian dynamics simulations. The experimental results revealed a surprising nonmonotonic dependence of the unfolding rate on the force applied under strong adhesion conditions, resembling the catchbond behavior reported in the field of ligand-receptor interactions. Simulation results showed that the different unfolding pathways of DNA condensate under large forces derive from the force-dependent deformation of the DNA toroid, which explains the catch-bond behavior of DNA condensate in the magnetic tweezers experiments. These results challenge the universality of the regular toroidal DNA unwrapping mechanism and provide the most complete description to date of multivalent cation-dependent DNA unwrapping under tension.
文摘States of excess correlation have previously been achieved at macroscopic levels by simultaneously exposing two non-local spaces to weak electromagnetic field patterns, generated by toroids, presented in a sequence such that the angular velocity of the field is modulated by changes in frequency over time. Here we systematically investigated effects upon the local space at the center of a single toroid generating the excess correlation sequence. The results indicated that a 1 - 5 nT diminishment in field intensity on the Y- or east-west axis was characteristic of the excess correlation sequence which was not indicated for control conditions. Statistically significant shifts in field intensity approximately 40 to 60 s before the onset of the first field associated with the excess correlation sequence indicated a temporally non-linear effect which converged upon the ratio of g and the rotational velocity of the Earth for the local space where Coriolis-like forces were inferred. Intensity shifts associated with the excess correlation sequence but not controls were quantitatively convergent upon parameters of the hydrogen line (1.42 GHz). Implications for these findings were discussed in relation to Mach’s principle and, in particular, to the electron as a physical unit which was found to relate classical and quantum systems.