期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Under the surface:Pressure-induced planetary-scale waves,volcanic lightning,and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano 被引量:8
1
作者 David A.Yuen Melissa A.Scruggs +11 位作者 Frank J.Spera Yingcai Zheng Hao Hu Stephen R.McNutt Glenn Thompson Kyle Mandli Barry R.Keller Songqiao Shawn Wei Zhigang Peng Zili Zhou Francesco Mulargia Yuichiro Tanioka 《Earthquake Research Advances》 CSCD 2022年第3期1-13,共13页
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and... We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached-at 58km-the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasicontinuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient(wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous(~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot,volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 h, the eruptive volume and mass are estimated at 1.9 km^(3) and~2 900 Tg, respectively, corresponding to a VEI of 5–6 for this event. The high freq 展开更多
关键词 hunga tonga-hunga Ha'apai Atmospheric pressure wave Tsunami wave Volcanic lightning Phreatoplinian eruption
下载PDF
Volcanoes and Climate:Sizing up the Impact of the Recent Hunga Tonga-Hunga Ha'apai Volcanic Eruption from a Historical Perspective 被引量:5
2
作者 Meng ZUO Tianjun ZHOU +4 位作者 Wenmin MAN Xiaolong CHEN Jian LIU Fei LIU Chaochao GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期1986-1993,共8页
An undersea volcano at Hunga Tonga-Hunga Ha'apai(HTHH)near the South Pacific island nation of Tonga,erupted violently on 15 January 2022.Potential climate impact of the HTHH volcanic eruption is of great concern t... An undersea volcano at Hunga Tonga-Hunga Ha'apai(HTHH)near the South Pacific island nation of Tonga,erupted violently on 15 January 2022.Potential climate impact of the HTHH volcanic eruption is of great concern to the public;here,we intend to size up the impact of the HTHH eruption from a historical perspective.The influence of historical volcanic eruptions on the global climate are firstly reviewed,which are thought to have contributed to decreased surface temperature,increased stratospheric temperature,suppressed global water cycle,weakened monsoon circulation and El Niño-like sea surface temperature.Our understanding of the impacts of past volcanic eruptions on global-scale climate provides potential implication to evaluate the impact of the HTHH eruption.Based on historical simulations,we estimate that the current HTHH eruption with an intensity of 0.4 Tg SO_(2)injection will decrease the global mean surface temperature by only 0.004℃in the first year after eruption,which is within the amplitude of internal variability at the interannual time scale and thus not strong enough to have significant impacts on the global climate. 展开更多
关键词 hunga tonga-hunga Ha'apai volcanic eruption global climate surface temperature MONSOON ENSO
下载PDF
Columnar optical,microphysical and radiative properties of the 2022 Hunga Tonga volcanic ash plumes
3
作者 Ke Gui Huizheng Che +11 位作者 Lin Tian Yaqiang Wang Chong Shi Wenrui Yao Yuanxin Liang Lei Li Yu Zheng Lei Zhang Zhaoliang Zeng Junting Zhong Zhili Wang Xiaoye Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2022年第19期2013-2021,共9页
The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aeroso... The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale. 展开更多
关键词 hunga tonga-hunga Ha’apai eruption Volcanic aerosols Multi-satellite and ground-based observations Aerosol optical–microphysical properties Radiative forcing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部