从健康番茄植株根际土中分离筛选得到对番茄灰霉病菌和番茄叶霉病菌均有较强拮抗作用的生防细菌WXCDD51,通过形态特征、生理生化特征和16S r DNA序列分析鉴定其属于假单胞菌属(Pseudomonas sp.)。菌丝生长试验研究结果表明,该菌株的无...从健康番茄植株根际土中分离筛选得到对番茄灰霉病菌和番茄叶霉病菌均有较强拮抗作用的生防细菌WXCDD51,通过形态特征、生理生化特征和16S r DNA序列分析鉴定其属于假单胞菌属(Pseudomonas sp.)。菌丝生长试验研究结果表明,该菌株的无菌滤液可以显著抑制番茄灰霉病菌和番茄叶霉病菌菌丝生长,抑制率分别为94.29%和94.06%;盆栽试验结果表明,该菌株可以有效防治番茄灰霉病和番茄叶霉病,防效分别为66.23%和69.45%;拮抗试验显示,该菌株对10种植物病原真菌均有不同程度的抑制作用,抑菌率在53.04%~94.59%;促生试验表明,该菌株对番茄种子萌发及幼苗生长均具有一定的促进作用,用浓度为10~6 cfu·mL^(-1)的菌液浸种处理,种子发芽率、胚根长度与对照相比分别增加80.0%和62.57%。用菌液(10~7 cfu·mL^(-1))灌根处理的番茄幼苗,其各项生理指标均显著高于对照;用菌液(10~7 cfu·mL^(-1))浸泡番茄果实可防止腐烂且对果实营养品质无不良影响。展开更多
Tomato leaf mold is a common disease in tomato production and severely impacts the growth,fruit quality and yield of tomato plants.Research on tomato leaf mold has a long history and has focused mainly on the differen...Tomato leaf mold is a common disease in tomato production and severely impacts the growth,fruit quality and yield of tomato plants.Research on tomato leaf mold has a long history and has focused mainly on the differentiation of pathogen races,the structure and function of pathogen Avr gene products,the cloning of Cf resistance genes and the analysis of disease resistance mechanisms.Interactions between Cf and Avr are in accordance with the"gene-for-gene"hypothesis and typical Cf/Avr interactions are part of effector-triggered immunity(ETI).However,an increasing number of studies have proven that pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)is involved in the disease resistance response system mediated by Cf genes.In addition,different Cf genes have both similar and different roles in the disease resistance response,indicating that the disease resistance mechanism of Cf genes is complex.In this paper,progress in tomato leaf mold research was reviewed,and the regulatory mechanism underlying the Cf-mediated disease resistance response was thoroughly explored.We hope this summary will lay a foundation for research on tomato leaf mold disease resistance mechanisms and is applicable to breeding for disease resistance.展开更多
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases...Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases.However,current DL methods often require substantial computational resources,hindering their application on resource-constrained devices.We propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this.The Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification.The proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet approach.More specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato diseases.The model could be used on mobile platforms because it is lightweight and designed with fewer layers.Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.展开更多
Tomato leaf curl New Delhi virus(ToLCNDV),a bipartite begomovirus,was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops.To date,the virus has been reported t...Tomato leaf curl New Delhi virus(ToLCNDV),a bipartite begomovirus,was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops.To date,the virus has been reported to infect more than 11 cucurbit crops,in 16 countries and regions,causing severe yield losses.In autumn 2022,ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China.Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade,and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate(Accession no.OP356207)and the tomato New Delhi ToLCNDV-Severe isolate(Accession no.HM159454).In this review,we summarize the occurrence and distribution,host range,detection and diagnosis,control strategies,and genetic resistance of ToLCNDV in the Cucurbitaceae.We then summarize pathways that could be undertaken to improve our understanding of this emerging disease,with the objective to develop ToLCNDV-resistant cucurbit cultivars.展开更多
Field studies were conducted at Hazara Agriculture Research Station, Abbottabad to evaluate thirteen AVRDC lines along with one commercial check (Roma) for potential of fruit yield against septoria leaf spot during su...Field studies were conducted at Hazara Agriculture Research Station, Abbottabad to evaluate thirteen AVRDC lines along with one commercial check (Roma) for potential of fruit yield against septoria leaf spot during summer season 2014. The disease established itself by natural infection and disease severity was estimated with the help of 0 - 5 disease rating scale after 15 days interval from the onset of symptoms. The lines showed significant difference in % septoria leaf spot infection. The disease severity % increased up to 100% in line AVTO1314 whereas the lowest % severity was recorded in AVTO1173 which showed the highest yield (468.1 g) with average fruit weight 122.22 g while the significantly lowest mean yield/plant (35.05 g) was calculated in line AVTO1314 with fruit weight 47.92 g. It was concluded that the line AVTO1173 could be useful in genetic programs for incorporating resistant genes in local tomato germplasm against septoria leaf spot disease.展开更多
Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have...Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have been developed targeting an array of aspects.Among which breeding for yield and yield-related traits are mostly focused.Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses.Among the biotic stresses,the impact of viral diseases is critical all over tomato cultivating areas.Improvement of tomato still largely rely on conventional methods worldwide while molecular approaches,particularly Marker Assisted Selection(MAS)has become popular across the globe as a fast,low cost and precise tool which is essential in present day plant breeding.In this review paper,breeding tomato for high yield and viral disease resistance,particularly to tomato yellow leaf curl virus disease(TYLCVD)using conventional and molecular approaches will be discussed.Lining up of this set of information will be useful to those who are interested in tomato variety development with high yielding and TYLCVD resistance.展开更多
基金supported by grants from the National Natural Science Foundation of China (Grant No.32072589)the Heilongjiang Provincial Natural Science Foundation of China (Grant No.YQ2021C013)。
文摘Tomato leaf mold is a common disease in tomato production and severely impacts the growth,fruit quality and yield of tomato plants.Research on tomato leaf mold has a long history and has focused mainly on the differentiation of pathogen races,the structure and function of pathogen Avr gene products,the cloning of Cf resistance genes and the analysis of disease resistance mechanisms.Interactions between Cf and Avr are in accordance with the"gene-for-gene"hypothesis and typical Cf/Avr interactions are part of effector-triggered immunity(ETI).However,an increasing number of studies have proven that pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)is involved in the disease resistance response system mediated by Cf genes.In addition,different Cf genes have both similar and different roles in the disease resistance response,indicating that the disease resistance mechanism of Cf genes is complex.In this paper,progress in tomato leaf mold research was reviewed,and the regulatory mechanism underlying the Cf-mediated disease resistance response was thoroughly explored.We hope this summary will lay a foundation for research on tomato leaf mold disease resistance mechanisms and is applicable to breeding for disease resistance.
基金thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/3)funded by Princess Nourah bint Abdulrahman University Researchers.Supporting Project Number(PNURSP2023R409),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases.However,current DL methods often require substantial computational resources,hindering their application on resource-constrained devices.We propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this.The Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification.The proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet approach.More specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato diseases.The model could be used on mobile platforms because it is lightweight and designed with fewer layers.Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
基金supported by a grant from the Key Research and Development Program of Hainan Province(ZDYF2021XDNY166)the Key Science and Technology Program for Agricultural(Vegetable)New Variety Breeding of Zhejiang Province(2021C02065)the Earmarked Fund for Modern Agro-Industry Technology Research System of China(CARS-26-17).
文摘Tomato leaf curl New Delhi virus(ToLCNDV),a bipartite begomovirus,was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops.To date,the virus has been reported to infect more than 11 cucurbit crops,in 16 countries and regions,causing severe yield losses.In autumn 2022,ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China.Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade,and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate(Accession no.OP356207)and the tomato New Delhi ToLCNDV-Severe isolate(Accession no.HM159454).In this review,we summarize the occurrence and distribution,host range,detection and diagnosis,control strategies,and genetic resistance of ToLCNDV in the Cucurbitaceae.We then summarize pathways that could be undertaken to improve our understanding of this emerging disease,with the objective to develop ToLCNDV-resistant cucurbit cultivars.
文摘Field studies were conducted at Hazara Agriculture Research Station, Abbottabad to evaluate thirteen AVRDC lines along with one commercial check (Roma) for potential of fruit yield against septoria leaf spot during summer season 2014. The disease established itself by natural infection and disease severity was estimated with the help of 0 - 5 disease rating scale after 15 days interval from the onset of symptoms. The lines showed significant difference in % septoria leaf spot infection. The disease severity % increased up to 100% in line AVTO1314 whereas the lowest % severity was recorded in AVTO1173 which showed the highest yield (468.1 g) with average fruit weight 122.22 g while the significantly lowest mean yield/plant (35.05 g) was calculated in line AVTO1314 with fruit weight 47.92 g. It was concluded that the line AVTO1173 could be useful in genetic programs for incorporating resistant genes in local tomato germplasm against septoria leaf spot disease.
基金the Long-term Research Grant Scheme(LRGS),Ministry of Higher Education,Malaysia,Project No.LRGS/1/2019/UKM/5,Vote No.6300242 for the financial support to conduct activities on this research program.
文摘Tomato(Solanum lycopersicum L.)belonging to the family Solanaceae is the second most consumed and cultivated vegetable globally.Since the ancient time of its domestication,thousands of cultivated tomato varieties have been developed targeting an array of aspects.Among which breeding for yield and yield-related traits are mostly focused.Cultivated tomato is extremely genetically poor and hence it is a victim for several biotic and abiotic stresses.Among the biotic stresses,the impact of viral diseases is critical all over tomato cultivating areas.Improvement of tomato still largely rely on conventional methods worldwide while molecular approaches,particularly Marker Assisted Selection(MAS)has become popular across the globe as a fast,low cost and precise tool which is essential in present day plant breeding.In this review paper,breeding tomato for high yield and viral disease resistance,particularly to tomato yellow leaf curl virus disease(TYLCVD)using conventional and molecular approaches will be discussed.Lining up of this set of information will be useful to those who are interested in tomato variety development with high yielding and TYLCVD resistance.