TiN,Ti1-xAIxN single layer coatings and TiN/Ti1-xAIxN multilayer coatings were deposited on SKH51 tool steel substrate by arc ion plating.The coatings were annealed in air to study the effect of aluminum and film stru...TiN,Ti1-xAIxN single layer coatings and TiN/Ti1-xAIxN multilayer coatings were deposited on SKH51 tool steel substrate by arc ion plating.The coatings were annealed in air to study the effect of aluminum and film structure on the oxidation performance.The surface morphology and structure were characterized by scanning electron microscopy and X-ray diffraction.The element distribution on the cross section was analyzed by electron probe microscopy.It is found that the oxidation resistance of these Ti1-xAlxN based coatings is mainly attributed to aluminum content in them.In comparison with the Ti1-xAlxN single layer coating,the TiN layer inserting into the Ti1-xAlxN in a multilayer coating increases the tendency of Ti diffusion toward the surface and forms a Ti-enriched top surface oxide layer,thus degrades the oxidation resistance.As far as the oxidation resistance is concerned in this study,Ti0.33Al0.67N single layer coating performs the best among all coatings.The kinetic of oxidation behavior of all coatings presents two definite stages.One is a slow oxidation growth which conforms to parabolic law,and the other presents severe mass gain with oxidation duration.The annealing time for severe oxidation initiation is responsible to Fe2O3formation in the oxide scale.展开更多
TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray ...TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.展开更多
基金the financial supports from the project of the Innovation Center of China(Grant No. 11C26214403099)the Science and Technology Project of Guangdong Province(Grant No.2010B090400172)
文摘TiN,Ti1-xAIxN single layer coatings and TiN/Ti1-xAIxN multilayer coatings were deposited on SKH51 tool steel substrate by arc ion plating.The coatings were annealed in air to study the effect of aluminum and film structure on the oxidation performance.The surface morphology and structure were characterized by scanning electron microscopy and X-ray diffraction.The element distribution on the cross section was analyzed by electron probe microscopy.It is found that the oxidation resistance of these Ti1-xAlxN based coatings is mainly attributed to aluminum content in them.In comparison with the Ti1-xAlxN single layer coating,the TiN layer inserting into the Ti1-xAlxN in a multilayer coating increases the tendency of Ti diffusion toward the surface and forms a Ti-enriched top surface oxide layer,thus degrades the oxidation resistance.As far as the oxidation resistance is concerned in this study,Ti0.33Al0.67N single layer coating performs the best among all coatings.The kinetic of oxidation behavior of all coatings presents two definite stages.One is a slow oxidation growth which conforms to parabolic law,and the other presents severe mass gain with oxidation duration.The annealing time for severe oxidation initiation is responsible to Fe2O3formation in the oxide scale.
基金This work was supported by the National Natural Science Foundation of China under grant No.10474074the Hubei Natural Science Foundation under grant No.2001ABB060.
文摘TixAl1-xN films have been prepared by RF reactive magnetron sputtering. X-ray diffraction results showed that TixAl1-xN thin films in this study were hexagonal wurtzite structure with the Ti content up to 0.18. X-ray photoelectron spectrocopy studies provided that the Nls core-electron spectrum of TixAl1-xN thin film brodend with increasing Ti content, and the difference of the chemical shifts for Ti2p3/2 line between TiN and TixAl1-xN th77pj in film was 0.7 eV.