The complex flow characteristics in the tip region of a tandem cascade with tip clearance have been calculated and analyzed using Delayed Detached Eddy Simulation(DDES).The coherent mechanism of the vortex structures ...The complex flow characteristics in the tip region of a tandem cascade with tip clearance have been calculated and analyzed using Delayed Detached Eddy Simulation(DDES).The coherent mechanism of the vortex structures near the blade tip was discussed,and the unsteady behaviors and features in the tip flow field were analyzed.Additionally,the interaction between the tip leakage flow and the gap jet was revealed.The results show that,compared to the datum cascade,the blade tip load of the rear blade increases while that of the front blade decreases.Unsteady fluctuations of the tandem cascade are mainly caused by the interaction between the tip leakage flow and gap jet,and by the mixing of the vortex structures,but there is no essential change in the spectrum feature of the tip leakage flow.Finally,a detailed analysis of the development of vortices in the tip region is conducted by the topological structures of the flow field.Combined with the three-dimensional vortex structures,the schematic diagram of the vortex system of the datum single-row cascade and tandem cascade is summarized.展开更多
The turbine blades of aircrafts must be properly cooled to prevent engine failure.Thus,to investigate the influence of the tip structure on the film cooling effect,pressure-sensitive paint test technology was used to ...The turbine blades of aircrafts must be properly cooled to prevent engine failure.Thus,to investigate the influence of the tip structure on the film cooling effect,pressure-sensitive paint test technology was used to determine the adiabatic film cooling effectiveness in this study.The experiment was completed in a cascade comprising three straight blades.The effects of the blowing ratio,density ratio,tip clearance,and tip structure on film cooling efficiency were analyzed.The experimental results demonstrated that,as the blowing ratio increased,the film coverage area and film cooling efficiency increased under most experimental conditions.However,the film cooling efficiency was found to initially increase,and subsequently decrease,as the blowing ratio increased.The respective influences of the density ratio and tip clearance on the film cooling efficiency were found to be significant.The density ratio experiments revealed that a high-density ratio can result in better film coverage than the low-density-ratio air.The tip clearance experimental results indicated that a small tip clearance promotes an increase in film cooling efficiency;this is because the small tip clearance negatively affects the main stream leakage flow,which can reduce the film coverage area.Under the conditions of the Base case 2 configuration,a blowing ratio of 2.1,and a tip clearance of 0.6%h,the average film cooling efficiency of the blade tip was 0.22.Among the three blade tip structures applied in this study,Base case 2 demonstrated higher film cooling efficiency than the other two blade tip structures under the conditions of the same blowing ratio,tip clearance,and density ratio.展开更多
基金co-supported by the National Science and Technology Major Project,China(No.2017-Ⅱ-0001-0013)the National Natural Science Foundation of China(Nos.52106057 and 51790512)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210483)the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics,China(Nos.D5150210006 and D5050210015)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2022013).
文摘The complex flow characteristics in the tip region of a tandem cascade with tip clearance have been calculated and analyzed using Delayed Detached Eddy Simulation(DDES).The coherent mechanism of the vortex structures near the blade tip was discussed,and the unsteady behaviors and features in the tip flow field were analyzed.Additionally,the interaction between the tip leakage flow and the gap jet was revealed.The results show that,compared to the datum cascade,the blade tip load of the rear blade increases while that of the front blade decreases.Unsteady fluctuations of the tandem cascade are mainly caused by the interaction between the tip leakage flow and gap jet,and by the mixing of the vortex structures,but there is no essential change in the spectrum feature of the tip leakage flow.Finally,a detailed analysis of the development of vortices in the tip region is conducted by the topological structures of the flow field.Combined with the three-dimensional vortex structures,the schematic diagram of the vortex system of the datum single-row cascade and tandem cascade is summarized.
基金supported by the National Natural Science Foundation of China (51906008)the Fundamental Research Funds for Central Universities (YWF-21-BJ-J-822)the National Science and Technology Major Project (2017-Ⅲ-0003-0027)
文摘The turbine blades of aircrafts must be properly cooled to prevent engine failure.Thus,to investigate the influence of the tip structure on the film cooling effect,pressure-sensitive paint test technology was used to determine the adiabatic film cooling effectiveness in this study.The experiment was completed in a cascade comprising three straight blades.The effects of the blowing ratio,density ratio,tip clearance,and tip structure on film cooling efficiency were analyzed.The experimental results demonstrated that,as the blowing ratio increased,the film coverage area and film cooling efficiency increased under most experimental conditions.However,the film cooling efficiency was found to initially increase,and subsequently decrease,as the blowing ratio increased.The respective influences of the density ratio and tip clearance on the film cooling efficiency were found to be significant.The density ratio experiments revealed that a high-density ratio can result in better film coverage than the low-density-ratio air.The tip clearance experimental results indicated that a small tip clearance promotes an increase in film cooling efficiency;this is because the small tip clearance negatively affects the main stream leakage flow,which can reduce the film coverage area.Under the conditions of the Base case 2 configuration,a blowing ratio of 2.1,and a tip clearance of 0.6%h,the average film cooling efficiency of the blade tip was 0.22.Among the three blade tip structures applied in this study,Base case 2 demonstrated higher film cooling efficiency than the other two blade tip structures under the conditions of the same blowing ratio,tip clearance,and density ratio.