DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation in...DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.展开更多
The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformati...The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.展开更多
Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means...Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.展开更多
Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to im...Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to improve the bioinert nature of microcrystalline Ti Ni alloys and inhibit on the release of toxic nickel ions to obtain excellent osteogenesis and osseointegration function. In the present study, nanocrystalline Ti49.2Ni50.8 alloy has been fabricated via equal channel angular pressing(ECAP), and the in vitro and in vivo studies revealed that it had enhanced cell viability, adhesion, proliferation, ALP(Alkaline phosphatase)activity and mineralization, and increased periphery thickness of new bone, in comparison to the commercial coarse-grained counterpart. These findings indicate that the reduction of grain size is beneficial to increasing the biocompatibility of Ti49.2Ni50.8 shape memory alloy.展开更多
基金the National Natural Science Foundation of China under grant No. 59601004,59731030.
文摘DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.
文摘The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.
文摘Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.
基金supported by the National Key R&D Program of China (No. 2018YFC1106600)National Natural Science Foundation of China (NSFC)+4 种基金the Russian Foundation for Basic Research (RFBR) NSFC-RFBR Cooperative Project (No. 51611130054)the National Natural Science Foundation of China (Nos. 51431002 and 51871004)the National Natural Science Foundation of China (NSFC)the Research Grants Council (RGC) of Hong Kong NSFC-RGC Joint Research Scheme (Grant No. 5161101031)the financial support from Saint Petersburg State University in the framework of Call 3 project (id 26130576)
文摘Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to improve the bioinert nature of microcrystalline Ti Ni alloys and inhibit on the release of toxic nickel ions to obtain excellent osteogenesis and osseointegration function. In the present study, nanocrystalline Ti49.2Ni50.8 alloy has been fabricated via equal channel angular pressing(ECAP), and the in vitro and in vivo studies revealed that it had enhanced cell viability, adhesion, proliferation, ALP(Alkaline phosphatase)activity and mineralization, and increased periphery thickness of new bone, in comparison to the commercial coarse-grained counterpart. These findings indicate that the reduction of grain size is beneficial to increasing the biocompatibility of Ti49.2Ni50.8 shape memory alloy.