The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by con...The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.展开更多
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are...The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the effects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial dif- ferential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge-Kutta method. Moreover, the effects of different truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.展开更多
In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilto...In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilton principle. The method of multiple scales is applied to analyze the nonlinear partial differential equation. The natural frequencies and modes are investigated by performing the complex mode approach. The effect of natural frequencies with the stiffness and the axial speeds are numerically demonstrated. The solvability conditions are established for the cases of without and with 3:1 internal resonances. The relationships between the nonlinear frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients are showed for the case of without internal resonances. The effects of the related coefficients are demonstrated for the case of 3:1 internal resonances.展开更多
When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,...When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.展开更多
The boundary stabilization problem of a Timoshenko beam attached with a mass at one end is studied. First, with linear boundary force feedback and moment control simultaneously at the end attached with the load, the e...The boundary stabilization problem of a Timoshenko beam attached with a mass at one end is studied. First, with linear boundary force feedback and moment control simultaneously at the end attached with the load, the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t →∞. Then, some counterexamples are given to show that, in other casest the corresponding closed loop system is, in general, not stable asymtotically, let alone exponentially.展开更多
Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transve...Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely nonuniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.展开更多
The stabilization problem of a nonuniform Timoshenko beam system with controllers at the beam's right tip with rotor inertia is studied.First,with a special kind of linear boundary force feedback and moment contro...The stabilization problem of a nonuniform Timoshenko beam system with controllers at the beam's right tip with rotor inertia is studied.First,with a special kind of linear boundary force feedback and moment control existing simultaneously,the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t→∞.Then in other cases,some conditions for the corresponding closed loop system to be asymptotically stable are also derived.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11272278)
文摘The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.
基金supported by the State Key Program of National Natural Science Foundation of China (10932006 and 11232009)Innovation Program of Shanghai Municipal Education Commission (12YZ028)
文摘The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the effects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial dif- ferential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge-Kutta method. Moreover, the effects of different truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.
基金supported by the National Outstanding Young Scientists Foundation of China (Grant No. 10725209)the National Natural Science Foundation of China (Grant No. 90816001)+3 种基金Shanghai Subject Chief Scientist Project (Grant No. 09XD1401700)Innovation Foundation for Graduates of Shanghai University (Grant No. A.16-0401-08-005)Shanghai Leading Academic Discipline Project (Grant No. S30106)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0844)
文摘In this paper, nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends are investigated. The governing equations and the associated boundary conditions are derived by the extended Hamilton principle. The method of multiple scales is applied to analyze the nonlinear partial differential equation. The natural frequencies and modes are investigated by performing the complex mode approach. The effect of natural frequencies with the stiffness and the axial speeds are numerically demonstrated. The solvability conditions are established for the cases of without and with 3:1 internal resonances. The relationships between the nonlinear frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients are showed for the case of without internal resonances. The effects of the related coefficients are demonstrated for the case of 3:1 internal resonances.
基金Projects(41807265,41972286,42072309)supported by the National Natural Science Foundation of ChinaProjects(HKLBEF202001,HKLBEF202002)supported by the Hubei Key Laboratory of Blasting Engineering Foundation,China。
文摘When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.
基金Project supported by the the National Key Project of China.
文摘The boundary stabilization problem of a Timoshenko beam attached with a mass at one end is studied. First, with linear boundary force feedback and moment control simultaneously at the end attached with the load, the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t →∞. Then, some counterexamples are given to show that, in other casest the corresponding closed loop system is, in general, not stable asymtotically, let alone exponentially.
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
基金Project supported by the National Natural Science Foundation of China (No.10472039)
文摘Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely nonuniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.
基金This research is supported by the National Natural Science Foundation of China (00174008).
文摘The stabilization problem of a nonuniform Timoshenko beam system with controllers at the beam's right tip with rotor inertia is studied.First,with a special kind of linear boundary force feedback and moment control existing simultaneously,the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t→∞.Then in other cases,some conditions for the corresponding closed loop system to be asymptotically stable are also derived.