研究了一种新的自适应时频分析方法——局部均值分解LMD(Local mean decomposition)方法,并针对齿轮故障振动信号的调制特征,提出了基于LMD的齿轮故障诊断方法。LMD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义...研究了一种新的自适应时频分析方法——局部均值分解LMD(Local mean decomposition)方法,并针对齿轮故障振动信号的调制特征,提出了基于LMD的齿轮故障诊断方法。LMD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义的PF(Product function)分量之和,从而获得原始信号完整的时频分布,其本质上是将多分量的信号自适应地分解为若干个单分量的调幅-调频信号之和,非常适合于处理多分量的调幅-调频信号。在介绍LMD方法的基础上,对LMD和EMD(Empirical mode decomposition)方法进行了对比,结果表明了LMD方法的优越性,同时将LMD方法应用于齿轮故障诊断,对实际的齿轮故障振动信号进行了分析,结果表明LMD方法可以有效地应用于齿轮故障诊断。展开更多
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar...Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.展开更多
基金Supported by Shaanxi Provincial Overall Innovation Project of Science and Technology,China(Grant No.2013KTCQ01-06)
文摘Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.