In this paper we consider properties of the four-dimensional space-time manifold M caused by the proposition that, according to the scheme theory, the manifold M is locally isomorphic to the spectrum of the algebra A,...In this paper we consider properties of the four-dimensional space-time manifold M caused by the proposition that, according to the scheme theory, the manifold M is locally isomorphic to the spectrum of the algebra A, M ≅Spec (A), where A is the commutative algebra of distributions of quantum-field densities. Points of the manifold M are defined as maximal ideals of density distributions. In order to determine the algebra A, it is necessary to define multiplication on densities and to eliminate those densities, which cannot be multiplied. This leads to essential restrictions imposed on densities and on space-time properties. It is found that the only possible case, when the commutative algebra A exists, is the case, when the quantum fields are in the space-time manifold M with the structure group SO (3, 1) (Lorentz group). The algebra A consists of distributions of densities with singularities in the closed future light cone subset. On account of the local isomorphism M ≅Spec (A) , the quantum fields exist only in the space-time manifold with the one-dimensional arrow of time. In the fermion sector the restrictions caused by the possibility to define the multiplication on the densities of spinor fields can explain the chirality violation. It is found that for bosons in the Higgs sector the charge conjugation symmetry violation on the densities of states can be observed. This symmetry violation can explain the matter-antimatter imbalance. It is found that in theoretical models with non-abelian gauge fields instanton distributions are impossible and tunneling effects between different topological vacua | n> do not occur. Diagram expansion with respect to the -algebra variables is considered.展开更多
Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were o...Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were obtained using Monte Carlo simulations.For the n-type ZnO,the Pt/ZnO Schottky diode had the highest energy conversion efficiency,and the Ni/ZnO Schottky diode had the largest Isc.The overall electrical performance of PN junctions is better than that of Schottky diodes.The lifetimes of Pt/ZnO and Ni/ZnO are longer than for other Schottky devices,coming close to those of PN junctions.Considering that Schottky diodes are easier to fabricate and independent of p-type semiconductors,Pt/ZnO and Ni/ZnO diodes offer alternatives to PN-junction-based betavoltaic batteries.展开更多
文摘In this paper we consider properties of the four-dimensional space-time manifold M caused by the proposition that, according to the scheme theory, the manifold M is locally isomorphic to the spectrum of the algebra A, M ≅Spec (A), where A is the commutative algebra of distributions of quantum-field densities. Points of the manifold M are defined as maximal ideals of density distributions. In order to determine the algebra A, it is necessary to define multiplication on densities and to eliminate those densities, which cannot be multiplied. This leads to essential restrictions imposed on densities and on space-time properties. It is found that the only possible case, when the commutative algebra A exists, is the case, when the quantum fields are in the space-time manifold M with the structure group SO (3, 1) (Lorentz group). The algebra A consists of distributions of densities with singularities in the closed future light cone subset. On account of the local isomorphism M ≅Spec (A) , the quantum fields exist only in the space-time manifold with the one-dimensional arrow of time. In the fermion sector the restrictions caused by the possibility to define the multiplication on the densities of spinor fields can explain the chirality violation. It is found that for bosons in the Higgs sector the charge conjugation symmetry violation on the densities of states can be observed. This symmetry violation can explain the matter-antimatter imbalance. It is found that in theoretical models with non-abelian gauge fields instanton distributions are impossible and tunneling effects between different topological vacua | n> do not occur. Diagram expansion with respect to the -algebra variables is considered.
基金supported by the National Major Scientific Instruments and Equipment Development Projects(No.2012YQ240121)National Natural Science Foundation of China(No.11075064)
文摘Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were obtained using Monte Carlo simulations.For the n-type ZnO,the Pt/ZnO Schottky diode had the highest energy conversion efficiency,and the Ni/ZnO Schottky diode had the largest Isc.The overall electrical performance of PN junctions is better than that of Schottky diodes.The lifetimes of Pt/ZnO and Ni/ZnO are longer than for other Schottky devices,coming close to those of PN junctions.Considering that Schottky diodes are easier to fabricate and independent of p-type semiconductors,Pt/ZnO and Ni/ZnO diodes offer alternatives to PN-junction-based betavoltaic batteries.