在需求和提前期均是随机的库存系统中,提前期需求的分布是由提前期分布与需求分布复合而成的,这个复合分布的计算通常是困难的。本文采用基于Gibbs抽样的马尔科夫链蒙特卡洛(MCMC,Markov chain Monte Carlo)方法,抽取条件分布样本作为...在需求和提前期均是随机的库存系统中,提前期需求的分布是由提前期分布与需求分布复合而成的,这个复合分布的计算通常是困难的。本文采用基于Gibbs抽样的马尔科夫链蒙特卡洛(MCMC,Markov chain Monte Carlo)方法,抽取条件分布样本作为提前期需求分布的样本,通过样本来计算提前期需求分布密度、服务水平和损失函数。这种方法避免了直接求解复杂积分计算上的困难,也克服了近似分布拟合偏差过大的问题,有效地解决了随机需求与随机提前期的复杂库存系统中提前期需求确定问题。理论与数值分析结果表明:与现有方法相比较,基于MCMC的方法具有计算简便、拟合精度高、通用性好等特点。展开更多
文摘在需求和提前期均是随机的库存系统中,提前期需求的分布是由提前期分布与需求分布复合而成的,这个复合分布的计算通常是困难的。本文采用基于Gibbs抽样的马尔科夫链蒙特卡洛(MCMC,Markov chain Monte Carlo)方法,抽取条件分布样本作为提前期需求分布的样本,通过样本来计算提前期需求分布密度、服务水平和损失函数。这种方法避免了直接求解复杂积分计算上的困难,也克服了近似分布拟合偏差过大的问题,有效地解决了随机需求与随机提前期的复杂库存系统中提前期需求确定问题。理论与数值分析结果表明:与现有方法相比较,基于MCMC的方法具有计算简便、拟合精度高、通用性好等特点。