Non-Hermitian systems with parity–time(PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer(WPT).The WPT system that satisfies PT-symmetry always has real eigenvalues,...Non-Hermitian systems with parity–time(PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer(WPT).The WPT system that satisfies PT-symmetry always has real eigenvalues,which promote efficient energy transfer.However,meeting the condition of PT-symmetry is one of the most puzzling issues.Stable power transfer under different transmission conditions is also a great challenge.Bound state in the continuum(BIC)supporting extreme quality-factor mode provides an opportunity for efficient WPT.Here,we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry,and it can even realize more stable and efficient power transfer than PT-symmetric systems.Importantly,BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems.Our results not only extend non-Hermitian physics beyond PT-symmetry,but also bridge the gap between BIC and practical application engineering,such as highperformance WPT,wireless sensing and communications.展开更多
We study the decays ofΛb→Λ(→pπ^(−))ℓ^(+)ℓ^(−)withℓ=(e,μ,τ).We examine the full angular distributions with polarizedΛb,where the T-odd observables are identified.We discuss the possible effects of new physics(N...We study the decays ofΛb→Λ(→pπ^(−))ℓ^(+)ℓ^(−)withℓ=(e,μ,τ).We examine the full angular distributions with polarizedΛb,where the T-odd observables are identified.We discuss the possible effects of new physics(NP)and find that the T-odd observables are sensitive to them as they vanish in the standard model.Special attention is given to the interference of(pseudo)scalar operators with(axial)vector operators in polarized Λ_(b)→Λ(→pπ^(−))τ^(+)τ^(−),which are studied for the first time.Their effects are proportional to the lepton masses and therefore may evade the constraint from Λ_(b)→Λ(→pπ^(−))μ^(+)μ^(−) at the LHCb naturally.AsΛ_(b)→Λ(→pπ^(−))τ^(+)τ^(−) is uncontaminated by the charmonia resonance,it provides a clean background to probe NP.In addition,we show that the experimental central value of K10 in Λ_(b)→Λ(→pπ^(−))μ^(+)μ^(−) at the LHCb can be explained by the NP case,which couples to the right-handed quarks and leptons.The polarization fraction of Λ_(b) at the LHCb is found to be consistent with zero regardless of the NP scenarios.展开更多
Based on 16 years of magnetic field observations from CHAMP and Swarm satellites,this study investigates the influence of the Interplanetary Magnetic Field(IMF)Bx component on the location and peak current density of ...Based on 16 years of magnetic field observations from CHAMP and Swarm satellites,this study investigates the influence of the Interplanetary Magnetic Field(IMF)Bx component on the location and peak current density of the polar electrojets(PEJs).We find that the IMF Bx displays obvious local time,seasonal,and hemispherical effects on the PEJs,as follows:(1)Compared to other local times,its influence is weakest at dawn and dusk.(2)In the midnight sectors of both hemispheres,the IMF Bx tends to amplify the westward PEJ when it is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere;this effect is relatively stronger in the local winter hemisphere.(3)At noontime,the IMF Bx intensifies the eastward current when it is<0 in the Northern Hemisphere;in the Southern Hemisphere when it is>0,it reduces the westward current;this effect is notably more prominent in the local summer hemisphere.(4)Moreover,the noontime eastward current shifts towards higher latitudes,while the midnight westward current migrates towards lower latitudes when IMF Bx is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere.展开更多
foF2 seasonal asymmetry is investigated at Korhogo station from 1992 to 2002. We show that equinoctial asymmetry is less pronounced and somwhere is absent trough out solar cycle phase. In general, the absence of equin...foF2 seasonal asymmetry is investigated at Korhogo station from 1992 to 2002. We show that equinoctial asymmetry is less pronounced and somwhere is absent trough out solar cycle phase. In general, the absence of equinoctial asymmetry may be due to the fact that in equinox and for each solar cycle phase, the asymmetry is due to Russell-McPherron mechanism. The solstice anomaly or annual anomaly is always observed throughout solar cycle phase. The minimum value of ΔfoF2 is inferior than −60% seen during all solar cycle phase at 0700 LT. This annual asymmetry may be due to interplanetary corpuscular radiation.展开更多
Theoretical and empirical studies have suggested that an underestimate of the ENSO asymmetry may be accompanied by a climatologically smaller and warmer western Pacific warm pool. In light of this suggestion, simulati...Theoretical and empirical studies have suggested that an underestimate of the ENSO asymmetry may be accompanied by a climatologically smaller and warmer western Pacific warm pool. In light of this suggestion, simulations of the tropical Pacific climate by 19 Coupled Model Intercomparison Project Phase 3 (CMIP3) climate models that do not use flux adjustment were evaluated. Our evaluation revealed systematic biases in both the mean state and ENSO statistics. The mean state in most of the models had a smaller and warmer warm pool. This common bias in the mean state was accompanied by a common bias in the simulated ENSO statistics: a significantly weak asymmetry between the two phases of ENSO. Moreover, despite the generally weak ENSO asymmetry simulated by all models, a positive correlation between the magnitude of the bias in the simulated warm-pool size and the magnitude of the bias in the simulated ENSO asymmetry was found. These findings support the suggested link between ENSO asymmetry and the tropical mean state--the climatological size and temperature of the warm pool in particular. Together with previous studies, these findings light up a path to improve the simulation of the tropical Pacific mean state by climate models: enhancing the asymmetry of ENSO in the climate models.展开更多
We argue that in Universes where future and past differ only by the entropy content a psychological arrow of time pointing in the direction of entropy increase can arise from natural selection in biological evolution....We argue that in Universes where future and past differ only by the entropy content a psychological arrow of time pointing in the direction of entropy increase can arise from natural selection in biological evolution. We show that this effect can be demonstrated in very simple toy computer simulations of evolution in an entropy increasing or decreasing environment.展开更多
One hundred and thirty years after the work of Ludwig Boltzmann on the interpretation of the irreversibility of physical phenomena, and one century after Einstein's formulation of Special Relativity, we are still ...One hundred and thirty years after the work of Ludwig Boltzmann on the interpretation of the irreversibility of physical phenomena, and one century after Einstein's formulation of Special Relativity, we are still not sure what we mean when we talk of “time” or “arrow of time”. We shall try to show that one source of this difficulty is our tendency to confuse, at least verbally, time and becoming, i.e. the course of time and the arrow of time, two concepts that the formalisms of modern physics are careful to distinguish. The course of time is represented by a time line that leads us to define time as the producer of duration. It is customary to place on this time line a small arrow that, ironically, must not be confused with the “arrow of time”. This small arrow is only there to indicate that the course of time is oriented, has a well-defined direction, even if this direction is arbitrary. The arrow of time, on the other hand, indicates the possibility for physical systems to experience, over the course of time, changes or transforma-tions that prevent them from returning to their initial state forever. Contrary to what the ex-pression “arrow of time” suggests, it is there-fore not a property of time itself but a property of certain physical phenomena whose dynamic is irreversible. By its very definition, the arrow of time presupposes the existence of a well- established course of time within which – in addition – certain phenomena have their own temporal orientation. We think that it is worth-while to emphasize the difference between sev-eral issues traditionally subsumed under the label “the problem of the direction of time”. If the expressions “course of time”, “direction of time” and “arrow of time” were better defined, systematically distinguished from one another and always used in their strictest sense, the debate about time, irreversibility and becoming in physics would become clearer.展开更多
This paper reports my recent study[1]on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach.An isospin- and momentum-dependent interaction is used in the study.Dependence of density,temp...This paper reports my recent study[1]on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach.An isospin- and momentum-dependent interaction is used in the study.Dependence of density,temperature,and isospin asymmetry of nuclear matter on its shear viscosity have been discussed.Similar to the symmetry energy,the symmetry shear viscosity is defined and its density and temperature dependence are studied.展开更多
Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity o...Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity of the object not directly to the observer, but instead to the center of gravity of object and observer. The reason why such a mass influence has not been reported might be that the mass of the observer in most experiments is much greater than that of the object, for example when earth is observing, satellites or detectors are studying nuclear masses.展开更多
The continuous-time quantum walk is a basic model for studying quantum transport and developing quantum-enhanced algorithms. Recent studies show that by introducing a phase into the standard continuous-time quantum wa...The continuous-time quantum walk is a basic model for studying quantum transport and developing quantum-enhanced algorithms. Recent studies show that by introducing a phase into the standard continuous-time quantum walk model, the time-reversal symmetry can be broken without changing the Hermitian property of the Hamiltonian. The time-reversal symmetry breaking quantum walk shows advantages in quantum transport, such as perfect state transfer, directional control, transport speedup, and quantum transport efficiency enhancement. In this work, we implement the time-reversal symmetry breaking quantum walks on a reconfigurable silicon photonic chip and demonstrate the enhancement introduced by breaking time-reversal symmetry. Perfect state transfer on a three-site ring, a quantum switch implemented on a six-site graph, and transport speedup using a linear chain of triangles are demonstrated with high fidelity. Time-reversal asymmetry has also been used in a simplified light-harvesting model,implying the potential of time-reversal symmetry breaking in photosynthesis investigations.展开更多
基金This work was supported by the National Key R&D Program of China(Nos.2021YFA1400602 and 2023YFA1407600)the National Natural Science Foundation of China(Nos.12004284 and 12374294)+1 种基金the Fundamental Research Funds for the Central Universities(No.22120210579)the Chenguang Program of Shanghai(No.21CGA22)。
文摘Non-Hermitian systems with parity–time(PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer(WPT).The WPT system that satisfies PT-symmetry always has real eigenvalues,which promote efficient energy transfer.However,meeting the condition of PT-symmetry is one of the most puzzling issues.Stable power transfer under different transmission conditions is also a great challenge.Bound state in the continuum(BIC)supporting extreme quality-factor mode provides an opportunity for efficient WPT.Here,we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry,and it can even realize more stable and efficient power transfer than PT-symmetric systems.Importantly,BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems.Our results not only extend non-Hermitian physics beyond PT-symmetry,but also bridge the gap between BIC and practical application engineering,such as highperformance WPT,wireless sensing and communications.
基金Supported in part by the National Key Research and Development Program of China (2020YFC2201501)the National Natural Science Foundation of China (NSFC) (12147103)。
文摘We study the decays ofΛb→Λ(→pπ^(−))ℓ^(+)ℓ^(−)withℓ=(e,μ,τ).We examine the full angular distributions with polarizedΛb,where the T-odd observables are identified.We discuss the possible effects of new physics(NP)and find that the T-odd observables are sensitive to them as they vanish in the standard model.Special attention is given to the interference of(pseudo)scalar operators with(axial)vector operators in polarized Λ_(b)→Λ(→pπ^(−))τ^(+)τ^(−),which are studied for the first time.Their effects are proportional to the lepton masses and therefore may evade the constraint from Λ_(b)→Λ(→pπ^(−))μ^(+)μ^(−) at the LHCb naturally.AsΛ_(b)→Λ(→pπ^(−))τ^(+)τ^(−) is uncontaminated by the charmonia resonance,it provides a clean background to probe NP.In addition,we show that the experimental central value of K10 in Λ_(b)→Λ(→pπ^(−))μ^(+)μ^(−) at the LHCb can be explained by the NP case,which couples to the right-handed quarks and leptons.The polarization fraction of Λ_(b) at the LHCb is found to be consistent with zero regardless of the NP scenarios.
基金the National Key Research and Development Program(2022YFF0503700)National Natural Science Foundation of China(42374200)the National Natural Science Foundation of China Basic Science Center(42188101).
文摘Based on 16 years of magnetic field observations from CHAMP and Swarm satellites,this study investigates the influence of the Interplanetary Magnetic Field(IMF)Bx component on the location and peak current density of the polar electrojets(PEJs).We find that the IMF Bx displays obvious local time,seasonal,and hemispherical effects on the PEJs,as follows:(1)Compared to other local times,its influence is weakest at dawn and dusk.(2)In the midnight sectors of both hemispheres,the IMF Bx tends to amplify the westward PEJ when it is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere;this effect is relatively stronger in the local winter hemisphere.(3)At noontime,the IMF Bx intensifies the eastward current when it is<0 in the Northern Hemisphere;in the Southern Hemisphere when it is>0,it reduces the westward current;this effect is notably more prominent in the local summer hemisphere.(4)Moreover,the noontime eastward current shifts towards higher latitudes,while the midnight westward current migrates towards lower latitudes when IMF Bx is<0 in the Northern Hemisphere and when it is>0 in the Southern Hemisphere.
文摘foF2 seasonal asymmetry is investigated at Korhogo station from 1992 to 2002. We show that equinoctial asymmetry is less pronounced and somwhere is absent trough out solar cycle phase. In general, the absence of equinoctial asymmetry may be due to the fact that in equinox and for each solar cycle phase, the asymmetry is due to Russell-McPherron mechanism. The solstice anomaly or annual anomaly is always observed throughout solar cycle phase. The minimum value of ΔfoF2 is inferior than −60% seen during all solar cycle phase at 0700 LT. This annual asymmetry may be due to interplanetary corpuscular radiation.
基金supported by the Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(Grant No.XDA05110302)National Natural Science Foundation of China(NSFC)Major Research Project(Grant Nos.40890150 and 40890155)+2 种基金the National Basic Research Program of China for Structures,Variability,and Climatic Impacts of Ocean Circulation and Warm Pool in the Tropical Pacific Ocean(Grant No.2012CB417401)China Postdoctoral Science Foudation funded project(2012M521378)Chinese Scholarship Council,the Large-scale and Climate Dynamics Program of the US National Science Foundation(Grant Nos.AGS0553111 and AGS0852329)
文摘Theoretical and empirical studies have suggested that an underestimate of the ENSO asymmetry may be accompanied by a climatologically smaller and warmer western Pacific warm pool. In light of this suggestion, simulations of the tropical Pacific climate by 19 Coupled Model Intercomparison Project Phase 3 (CMIP3) climate models that do not use flux adjustment were evaluated. Our evaluation revealed systematic biases in both the mean state and ENSO statistics. The mean state in most of the models had a smaller and warmer warm pool. This common bias in the mean state was accompanied by a common bias in the simulated ENSO statistics: a significantly weak asymmetry between the two phases of ENSO. Moreover, despite the generally weak ENSO asymmetry simulated by all models, a positive correlation between the magnitude of the bias in the simulated warm-pool size and the magnitude of the bias in the simulated ENSO asymmetry was found. These findings support the suggested link between ENSO asymmetry and the tropical mean state--the climatological size and temperature of the warm pool in particular. Together with previous studies, these findings light up a path to improve the simulation of the tropical Pacific mean state by climate models: enhancing the asymmetry of ENSO in the climate models.
文摘We argue that in Universes where future and past differ only by the entropy content a psychological arrow of time pointing in the direction of entropy increase can arise from natural selection in biological evolution. We show that this effect can be demonstrated in very simple toy computer simulations of evolution in an entropy increasing or decreasing environment.
文摘One hundred and thirty years after the work of Ludwig Boltzmann on the interpretation of the irreversibility of physical phenomena, and one century after Einstein's formulation of Special Relativity, we are still not sure what we mean when we talk of “time” or “arrow of time”. We shall try to show that one source of this difficulty is our tendency to confuse, at least verbally, time and becoming, i.e. the course of time and the arrow of time, two concepts that the formalisms of modern physics are careful to distinguish. The course of time is represented by a time line that leads us to define time as the producer of duration. It is customary to place on this time line a small arrow that, ironically, must not be confused with the “arrow of time”. This small arrow is only there to indicate that the course of time is oriented, has a well-defined direction, even if this direction is arbitrary. The arrow of time, on the other hand, indicates the possibility for physical systems to experience, over the course of time, changes or transforma-tions that prevent them from returning to their initial state forever. Contrary to what the ex-pression “arrow of time” suggests, it is there-fore not a property of time itself but a property of certain physical phenomena whose dynamic is irreversible. By its very definition, the arrow of time presupposes the existence of a well- established course of time within which – in addition – certain phenomena have their own temporal orientation. We think that it is worth-while to emphasize the difference between sev-eral issues traditionally subsumed under the label “the problem of the direction of time”. If the expressions “course of time”, “direction of time” and “arrow of time” were better defined, systematically distinguished from one another and always used in their strictest sense, the debate about time, irreversibility and becoming in physics would become clearer.
基金Suppprted by "100-talent plan" of Shanghai Institute of Applied Physics from the Chinese Academy of Sciences(No.Y290061011)
文摘This paper reports my recent study[1]on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach.An isospin- and momentum-dependent interaction is used in the study.Dependence of density,temperature,and isospin asymmetry of nuclear matter on its shear viscosity have been discussed.Similar to the symmetry energy,the symmetry shear viscosity is defined and its density and temperature dependence are studied.
文摘Einstein’s Special Theory of Relativity (SR) relates time dilation to the velocity between the observer and the observed object as if they are identical. Our new theory breaks this symmetry by relating the velocity of the object not directly to the observer, but instead to the center of gravity of object and observer. The reason why such a mass influence has not been reported might be that the mass of the observer in most experiments is much greater than that of the object, for example when earth is observing, satellites or detectors are studying nuclear masses.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0308700, and 2017YFA0303700)。
文摘The continuous-time quantum walk is a basic model for studying quantum transport and developing quantum-enhanced algorithms. Recent studies show that by introducing a phase into the standard continuous-time quantum walk model, the time-reversal symmetry can be broken without changing the Hermitian property of the Hamiltonian. The time-reversal symmetry breaking quantum walk shows advantages in quantum transport, such as perfect state transfer, directional control, transport speedup, and quantum transport efficiency enhancement. In this work, we implement the time-reversal symmetry breaking quantum walks on a reconfigurable silicon photonic chip and demonstrate the enhancement introduced by breaking time-reversal symmetry. Perfect state transfer on a three-site ring, a quantum switch implemented on a six-site graph, and transport speedup using a linear chain of triangles are demonstrated with high fidelity. Time-reversal asymmetry has also been used in a simplified light-harvesting model,implying the potential of time-reversal symmetry breaking in photosynthesis investigations.