堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石...堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石坝变形监测数据分解为趋势项、周期项和不规则波动三部分,再使用经验模态分解(empirical mode decomposition,EMD)对不规则波动平稳化处理,最后利用长短期记忆网络(long short-term memory,LSTM)预测分解后的序列,并利用贝叶斯优化方法进行超参数优化。为评估该方法的预测效果,以水布垭面板堆石坝为例,通过控制训练时长、预测时长、离群值数目等变量进行多组仿真实验,并与其他时序预测模型对比。结果表明该方法预测精度较高,适用性较广,对于堆石坝的性状评估具有一定的应用价值。展开更多
为实现对非平稳、非线性股票价格时间序列的高精度预测,提出经验模态分解下基于支持向量回归的股票价格集成预测方法EMD-SVRF(EMD and SVR based stock price integrated forecasting)。首先,运用经验模态分解方法获得股票对数收益率时...为实现对非平稳、非线性股票价格时间序列的高精度预测,提出经验模态分解下基于支持向量回归的股票价格集成预测方法EMD-SVRF(EMD and SVR based stock price integrated forecasting)。首先,运用经验模态分解方法获得股票对数收益率时间序列的本征模函数及趋势序列,然后,利用ε不敏感支持向量回归为各本征模函数及趋势序列分别建立预测模型,并计算各本征模函数及趋势项的预测值,最后,集成得到股票收益率序列预测值。实验表明,相对现有的EMD-Elman网络和ARMA-GARCH等主流股价预测方法,EMD-SVRF具有更小的拟合误差和预测误差,是一种高精度的股票价格预测方法。展开更多
文摘堆石坝变形监测数据是一种时间序列数据,可以用时序预测模型挖掘其规律并进行预测。本文利用时序预测模型提出一种堆石坝变形预测方法,该方法首先采用时间序列分解(seasonal-trend decomposition procedure based on loess,STL)将堆石坝变形监测数据分解为趋势项、周期项和不规则波动三部分,再使用经验模态分解(empirical mode decomposition,EMD)对不规则波动平稳化处理,最后利用长短期记忆网络(long short-term memory,LSTM)预测分解后的序列,并利用贝叶斯优化方法进行超参数优化。为评估该方法的预测效果,以水布垭面板堆石坝为例,通过控制训练时长、预测时长、离群值数目等变量进行多组仿真实验,并与其他时序预测模型对比。结果表明该方法预测精度较高,适用性较广,对于堆石坝的性状评估具有一定的应用价值。
文摘为实现对非平稳、非线性股票价格时间序列的高精度预测,提出经验模态分解下基于支持向量回归的股票价格集成预测方法EMD-SVRF(EMD and SVR based stock price integrated forecasting)。首先,运用经验模态分解方法获得股票对数收益率时间序列的本征模函数及趋势序列,然后,利用ε不敏感支持向量回归为各本征模函数及趋势序列分别建立预测模型,并计算各本征模函数及趋势项的预测值,最后,集成得到股票收益率序列预测值。实验表明,相对现有的EMD-Elman网络和ARMA-GARCH等主流股价预测方法,EMD-SVRF具有更小的拟合误差和预测误差,是一种高精度的股票价格预测方法。