Sequencing biofilm batch reactor(SBBR) under micro-aerobic condition was applied to the treatment of aniline-contaminated wastewater in this study.Hydraulic retention time(HRT) of 12—36 h and dissolved oxygen(DO) con...Sequencing biofilm batch reactor(SBBR) under micro-aerobic condition was applied to the treatment of aniline-contaminated wastewater in this study.Hydraulic retention time(HRT) of 12—36 h and dissolved oxygen(DO) concentration of 0.1—0.5 mg/L were selected as the operating variables to model,analyze and optimize the process.Five dependent parameters,aniline(AN),chemical oxygen demand(COD),ammonium,total nitrogen(TN) and total phosphorus(TP) removal efficiencies as the process responses,were studied.From the results,increase in DO concentration could promote the AN,COD and ammonium removal;increase in HRT could also lead to increase of the AN and ammonium removal,but might decrease COD removal due to endogenous respiration and soluble microbial products.In the SBBR system,24 h for HRT and 0.5 mg/L for DO concentration were chosen as the optimum operating condition.The actual removal efficiencies of COD,AN and ammonium under the optimum operating condition were 98.37%,100%and 89.29%,respectively.The experimental findings were in close agreement with the model prediction.The presence of glucose could promote bacterial growth and has positive influence on AN degradation and ammonium removal.展开更多
The investigation of the biodegradability and methane potential of bacterial pre-treated miscanthus sinensis has been carried out.One percent solution of Bacta-sile:A silage promoter was used to pre-treat miscanthus s...The investigation of the biodegradability and methane potential of bacterial pre-treated miscanthus sinensis has been carried out.One percent solution of Bacta-sile:A silage promoter was used to pre-treat miscanthus sinensis at 25℃.The anaerobic digestion experiments were carried out at 25℃ and 35℃ in batch experiments.The organic loading rates(OLR)varied between 1.25 g and 7 g in different batch reactors.The results showed that the highest methane concentration was 57% from digester 1 while the lowest methane produced was 38% from digester 3.The low methane production from digester 3 was attributed to temperature changes and poor organic loading rate.Bacterial pretreatment aided biodegradation of miscanthus at 25℃.Operating temperature of 25℃ had a great effect on digestion experiments resulting to longer required Hydraulic Retention Time(HRT).展开更多
The methane potentials of cyanobacteria and chlorella have been investigated in eight different lab scale reactors at 25℃for three-day Hydraulic Retention Time(HRT).Autoclavation pre-treatment was applied to the cyan...The methane potentials of cyanobacteria and chlorella have been investigated in eight different lab scale reactors at 25℃for three-day Hydraulic Retention Time(HRT).Autoclavation pre-treatment was applied to the cyanobacteria to aid digestion,while the Chlorella was obtained and digested in powdery form.The organic loading rates were 1g VS,2 g VS,3 g VS,4 g VS,5 g VS,6 g VS,7 g VS,8 g VS and 9 g VS.Methane production rates increased with increasing loading rates and started declining at loading rate higher than 7 g VS,while the HRT was kept constant.The highest methane production rates for cyanobacteria and chlorella were(78±25)mL/(L·d)and(100±25)mL/(L·d),respectively,at loading rate of 7 g VS.Digester instability occurred at loading rates of 8 g VS and 9 g VS with higher accumulation of methane concentrations.Lipid compositions of both feeds were close and the methane production potentials of both biomasses were also close and followed the same trend.展开更多
基金the National Major Water Project of China(No.2013ZX07201007)the Fund supported by State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2013DX06)
文摘Sequencing biofilm batch reactor(SBBR) under micro-aerobic condition was applied to the treatment of aniline-contaminated wastewater in this study.Hydraulic retention time(HRT) of 12—36 h and dissolved oxygen(DO) concentration of 0.1—0.5 mg/L were selected as the operating variables to model,analyze and optimize the process.Five dependent parameters,aniline(AN),chemical oxygen demand(COD),ammonium,total nitrogen(TN) and total phosphorus(TP) removal efficiencies as the process responses,were studied.From the results,increase in DO concentration could promote the AN,COD and ammonium removal;increase in HRT could also lead to increase of the AN and ammonium removal,but might decrease COD removal due to endogenous respiration and soluble microbial products.In the SBBR system,24 h for HRT and 0.5 mg/L for DO concentration were chosen as the optimum operating condition.The actual removal efficiencies of COD,AN and ammonium under the optimum operating condition were 98.37%,100%and 89.29%,respectively.The experimental findings were in close agreement with the model prediction.The presence of glucose could promote bacterial growth and has positive influence on AN degradation and ammonium removal.
文摘The investigation of the biodegradability and methane potential of bacterial pre-treated miscanthus sinensis has been carried out.One percent solution of Bacta-sile:A silage promoter was used to pre-treat miscanthus sinensis at 25℃.The anaerobic digestion experiments were carried out at 25℃ and 35℃ in batch experiments.The organic loading rates(OLR)varied between 1.25 g and 7 g in different batch reactors.The results showed that the highest methane concentration was 57% from digester 1 while the lowest methane produced was 38% from digester 3.The low methane production from digester 3 was attributed to temperature changes and poor organic loading rate.Bacterial pretreatment aided biodegradation of miscanthus at 25℃.Operating temperature of 25℃ had a great effect on digestion experiments resulting to longer required Hydraulic Retention Time(HRT).
文摘The methane potentials of cyanobacteria and chlorella have been investigated in eight different lab scale reactors at 25℃for three-day Hydraulic Retention Time(HRT).Autoclavation pre-treatment was applied to the cyanobacteria to aid digestion,while the Chlorella was obtained and digested in powdery form.The organic loading rates were 1g VS,2 g VS,3 g VS,4 g VS,5 g VS,6 g VS,7 g VS,8 g VS and 9 g VS.Methane production rates increased with increasing loading rates and started declining at loading rate higher than 7 g VS,while the HRT was kept constant.The highest methane production rates for cyanobacteria and chlorella were(78±25)mL/(L·d)and(100±25)mL/(L·d),respectively,at loading rate of 7 g VS.Digester instability occurred at loading rates of 8 g VS and 9 g VS with higher accumulation of methane concentrations.Lipid compositions of both feeds were close and the methane production potentials of both biomasses were also close and followed the same trend.
文摘污水厂尾水回用作为水源时,其ρ(TN)较高是亟待解决的问题.在调研污水厂尾水水质的基础上,利用MBBR(移动床生物膜反应器)对其进行深度脱氮,并考察HRT(水力停留时间)对不同填料(聚乙烯和陶粒)的MBBR运行效果的影响.结果表明,NO3--N是尾水中氮的主要形态,其质量浓度约占ρ(TN)的80.8%±8.4%.HRT分别为12、8和4 h时,对NO3--N去除率影响不大,均能达到90%以上,但反硝化能力随着HRT的缩短而成倍增加;HRT为4 h时各反应器的反硝化能力最大,聚乙烯和陶粒MBBR中分别为(28.4±14.5)和(27.4±14.3)mg(L·d)(以NO3--N计).随着HRT的减少,CODCr去除率呈降低趋势.三维荧光分析表明,进、出水中均含有类富里酸和类蛋白质等DOM物质.HRT为8 h时MBBR对DOM的去除率最高,聚乙烯填料MBBR对有机污染物的去除效果略优于陶粒填料.综合考虑氮和有机污染物去除效能,聚乙烯和陶粒填料MBBR优化HRT均为8 h.