Plant architecture is a complex agronomic trait and a major factor of crop yield,which is affected by several important hormones.Strigolactones(SLs)are identified as a new class hormoneinhibiting branching in many pla...Plant architecture is a complex agronomic trait and a major factor of crop yield,which is affected by several important hormones.Strigolactones(SLs)are identified as a new class hormoneinhibiting branching in many plant species and have been shown to be involved in various developmental processes.Genetical and chemical modulation of the SL pathway is recognized as a promising approach to modify plant architecture.However,whether and how the genes involved in the SL pathway could be utilized in breeding still remain elusive.Here,we demonstrate that a partial loss-of-function allele of the SL biosynthesis gene,HIGH TILLERING AND DWARF 1/DWARF17(HTD1/D17),which encodes CAROTENOID CLEAVAGE DIOXYGENASE 7(CCD7),increases tiller number and improves grain yield in rice.We found that the HTD1 gene had been widely utilized and co-selected with Semidwarf 1(SD1),both contributing to the improvement of plant architecture in modern rice varieties since the Green Revolution in the 1960s.Understanding how phytohormone pathway genes regulate plant architecture and how they have been utilized and selected in breeding will lay the foundation for developing the rational approaches toward improving crop yield.展开更多
Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" informati...Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.展开更多
The yield of rice is mostly affected by three factors,namely,panicle number,grain number and grain weight.Variation in panicle and grain numbers is mainly caused by tiller and panicle branches generated from axillary ...The yield of rice is mostly affected by three factors,namely,panicle number,grain number and grain weight.Variation in panicle and grain numbers is mainly caused by tiller and panicle branches generated from axillary meristems(AMs).MOC1 encodes a putative GRAS family nuclear protein that regulates AM formation.Although several alleles of MOC1 have been identified,its variation in germplasm resources remains unclear.In the present study we characterized a novel mocl allele named gnp6 which has a thymine insertion in the coding sequence of the SAW motif in the GRAS domain.This mutation causes arrested branch formation.The SAW motif is necessary for nuclear localization of GNP6/MOC1 where it functions as a transcription factor or co-regulator.Haplotype analysis showed that the coding region of GNP6/MOC1 was conserved without any non-synonymous mutations in 240 rice accessions.However,variation in the promoter region might affect the expression of it and its downstream genes.Joint haplotype analysis of GNP6/MOC1 and MOC3 showed that haplotype combinations H9,H10 and H11,namely MOC1-Hap1 in combination with MOC3-Hap3,MOC3-Hap4 or MOC3-Hap5 could be bred to promote branch formation.These findings will enrich the genetic resources available for rice breeders.展开更多
基金This work was supported by the National Key Research and Development Program of China(grant no.2016YFpO101801)National Natural Science Foundation of China(grant nos.91735304,31971921,31601285)+1 种基金Natural Science Foundation of Zhejiang Province(grant no.LR20C130001)Shenzhen Peacock Plan(grant no.KQTD2016113010482651)。
文摘Plant architecture is a complex agronomic trait and a major factor of crop yield,which is affected by several important hormones.Strigolactones(SLs)are identified as a new class hormoneinhibiting branching in many plant species and have been shown to be involved in various developmental processes.Genetical and chemical modulation of the SL pathway is recognized as a promising approach to modify plant architecture.However,whether and how the genes involved in the SL pathway could be utilized in breeding still remain elusive.Here,we demonstrate that a partial loss-of-function allele of the SL biosynthesis gene,HIGH TILLERING AND DWARF 1/DWARF17(HTD1/D17),which encodes CAROTENOID CLEAVAGE DIOXYGENASE 7(CCD7),increases tiller number and improves grain yield in rice.We found that the HTD1 gene had been widely utilized and co-selected with Semidwarf 1(SD1),both contributing to the improvement of plant architecture in modern rice varieties since the Green Revolution in the 1960s.Understanding how phytohormone pathway genes regulate plant architecture and how they have been utilized and selected in breeding will lay the foundation for developing the rational approaches toward improving crop yield.
基金supported by the grants from the National.Basic Research Program of China(2006CB 101700)the National Natural Science Foundation of China(30330370).
文摘Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.
基金supported by the National Natural Science Foundation of China(31801324,31171521)the Open Project of Guangxi Key Laboratory of Rice Genetics and Breeding(2018-05-Z06-KF08)China Postdoctoral Science Foundation(2017T100117 and 2019M650902)。
文摘The yield of rice is mostly affected by three factors,namely,panicle number,grain number and grain weight.Variation in panicle and grain numbers is mainly caused by tiller and panicle branches generated from axillary meristems(AMs).MOC1 encodes a putative GRAS family nuclear protein that regulates AM formation.Although several alleles of MOC1 have been identified,its variation in germplasm resources remains unclear.In the present study we characterized a novel mocl allele named gnp6 which has a thymine insertion in the coding sequence of the SAW motif in the GRAS domain.This mutation causes arrested branch formation.The SAW motif is necessary for nuclear localization of GNP6/MOC1 where it functions as a transcription factor or co-regulator.Haplotype analysis showed that the coding region of GNP6/MOC1 was conserved without any non-synonymous mutations in 240 rice accessions.However,variation in the promoter region might affect the expression of it and its downstream genes.Joint haplotype analysis of GNP6/MOC1 and MOC3 showed that haplotype combinations H9,H10 and H11,namely MOC1-Hap1 in combination with MOC3-Hap3,MOC3-Hap4 or MOC3-Hap5 could be bred to promote branch formation.These findings will enrich the genetic resources available for rice breeders.