期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Non‐noble metal single‐atom catalyst with MXene support:Fe1/Ti_(2)CO_(2) for CO oxidation 被引量:3
1
作者 Chun Zhu Jin‐Xia Liang +1 位作者 Yang‐Gang Wang Jun Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1830-1841,共12页
MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum c... MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts. 展开更多
关键词 Single‐atom catalyst Density functional theory ti_(2)co_(2)mxene co oxidation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部