Exploring zinc-free anode materials is one of the effective strategies to get the zinc dendrites problem of flexible zinc ion battery(ZIB)solved.In this work,an analogous heterostructure(AHS)is constructed from the ex...Exploring zinc-free anode materials is one of the effective strategies to get the zinc dendrites problem of flexible zinc ion battery(ZIB)solved.In this work,an analogous heterostructure(AHS)is constructed from the excellent MXene(Ti_(3)C_(2)T_(x))and TiSe_(2) nanosheets.The AHS not only possesses numerous diffu-sion paths and Zn^(2+)storage sites but also possesses a stable conductive network to accelerate charge transfer in the electrode.As a collaborative advantage,electrochemical measurement results show that MXene/TiSe_(2) electrodes display an excellent specific capacity of 177.9 mAh g^(-1) at 0.10 A g^(-1) and a long-term cycling stability of 77.4%capacity retention after 400 cycles.DFT computations further demon-strate the excellent performance of MXene/TiSe_(2) electrodes including desirable electronic conductivity and low Zn^(2+)migration barriers.The assembled flexible ZIB not only delivers a good specific capacity of 42.2μAh cm^(-2) at 0.20 mA cm^(-2) and a competitive energy density of 37.4μWh cm^(-2) but also exhibits excellent flexibility and thermostability.Furthermore,after 400 cycles at 0.60 A g^(-1),flexible ZIB shows a capacity retention of 73.8%.This work gives a successful attempt to design 2D layered materials as Zn metal-free anode for flexible ZIB.展开更多
基金supported by the National Natural Science Foundation of China (Nos.12004002 and 12274151)Anhui Provincial Natural Science Foundation (No.1908085QF251)Foundation for Introduction of High-Level Talents of Anhui University (No.S020118002/061).
文摘Exploring zinc-free anode materials is one of the effective strategies to get the zinc dendrites problem of flexible zinc ion battery(ZIB)solved.In this work,an analogous heterostructure(AHS)is constructed from the excellent MXene(Ti_(3)C_(2)T_(x))and TiSe_(2) nanosheets.The AHS not only possesses numerous diffu-sion paths and Zn^(2+)storage sites but also possesses a stable conductive network to accelerate charge transfer in the electrode.As a collaborative advantage,electrochemical measurement results show that MXene/TiSe_(2) electrodes display an excellent specific capacity of 177.9 mAh g^(-1) at 0.10 A g^(-1) and a long-term cycling stability of 77.4%capacity retention after 400 cycles.DFT computations further demon-strate the excellent performance of MXene/TiSe_(2) electrodes including desirable electronic conductivity and low Zn^(2+)migration barriers.The assembled flexible ZIB not only delivers a good specific capacity of 42.2μAh cm^(-2) at 0.20 mA cm^(-2) and a competitive energy density of 37.4μWh cm^(-2) but also exhibits excellent flexibility and thermostability.Furthermore,after 400 cycles at 0.60 A g^(-1),flexible ZIB shows a capacity retention of 73.8%.This work gives a successful attempt to design 2D layered materials as Zn metal-free anode for flexible ZIB.