Titanium dioxide(Ti O_2) is widely employed as a solid photocatalyst for solar energy conversion and environmental remediation. The ability to construct porous Ti O_2 with controlled particle size and narrowed bandgap...Titanium dioxide(Ti O_2) is widely employed as a solid photocatalyst for solar energy conversion and environmental remediation. The ability to construct porous Ti O_2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a templatefree acetic acid induced method for the synthesis of visiblelight responsive carbon-doped Ti O_2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of Ti O_2(1.84 e V)substantially. Moreover, the resultant microplate photocatalysts exhibit excellent photocatalytic efficiency and solid–liquid separation performance, which will be beneficial for future industrial applications.展开更多
基金supported by the National Natural Science Foundation of China(20966006)the Natural Science Foundation of the Inner Mongolia Autonomous Region(2014MS0218)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT-A1603)
文摘Titanium dioxide(Ti O_2) is widely employed as a solid photocatalyst for solar energy conversion and environmental remediation. The ability to construct porous Ti O_2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a templatefree acetic acid induced method for the synthesis of visiblelight responsive carbon-doped Ti O_2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of Ti O_2(1.84 e V)substantially. Moreover, the resultant microplate photocatalysts exhibit excellent photocatalytic efficiency and solid–liquid separation performance, which will be beneficial for future industrial applications.