采用自蔓延高温燃烧合成反应结合准热等静压技术 (SHS/PHIP)制备了组织连续分布的 Ti C- Ni系梯度功能材料 ,产物的成份分析显示 Ni元素沿厚度方向趋于连续过渡 ,改善了反应前的阶跃式分布。对 Ti C- Ni FGM在制备过程中的残余热应力进...采用自蔓延高温燃烧合成反应结合准热等静压技术 (SHS/PHIP)制备了组织连续分布的 Ti C- Ni系梯度功能材料 ,产物的成份分析显示 Ni元素沿厚度方向趋于连续过渡 ,改善了反应前的阶跃式分布。对 Ti C- Ni FGM在制备过程中的残余热应力进行了计算机有限元分析 ,并与 Ti C- Ni两层直接结合体进行了比较 ,发现 FGM具有明显的热应力缓和效果。展开更多
TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3A...TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.展开更多
文摘采用自蔓延高温燃烧合成反应结合准热等静压技术 (SHS/PHIP)制备了组织连续分布的 Ti C- Ni系梯度功能材料 ,产物的成份分析显示 Ni元素沿厚度方向趋于连续过渡 ,改善了反应前的阶跃式分布。对 Ti C- Ni FGM在制备过程中的残余热应力进行了计算机有限元分析 ,并与 Ti C- Ni两层直接结合体进行了比较 ,发现 FGM具有明显的热应力缓和效果。
文摘TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.