The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was disc...The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.展开更多
Hot compression behavior of TiC–Al2O3/Al composites was studied using the Gleeble-1500 system at a temperature range of 300–550 °C and at strain rate range of 0.01–10.00 s-1. The associated structural changes ...Hot compression behavior of TiC–Al2O3/Al composites was studied using the Gleeble-1500 system at a temperature range of 300–550 °C and at strain rate range of 0.01–10.00 s-1. The associated structural changes were studied by TEM observations. The results show that stress level decreases with deformation temperature increasing and strain rate decreasing, which can be represented by a Zener–Hollomon parameter in an exponent-type equation with hot deformation activation energy Q of 172.56 kJ·mol-1.Dynamic recovery occurs easily when strain rates are less than 10.00 s-1. Dynamic recrystallization can occur at strain rate of 10.00 s-1.展开更多
文摘The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt.% TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (Ⅳ) on fatigue crack growth (Δa). The mechanical properties and thermal fatigue resistance of TiC/Al203 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.
基金financially supported by the Inner Mongolia Science and Technology Reward Foundation(No.20101707)the Inner Mongolia Natural Science Foundation(No.2013MS0804)+1 种基金the Inner Mongolia High School Scientific Research Foundation(No.NJZZ14056)the Inner Mongolia University of Technology Foundation(No.ZD20120015)
文摘Hot compression behavior of TiC–Al2O3/Al composites was studied using the Gleeble-1500 system at a temperature range of 300–550 °C and at strain rate range of 0.01–10.00 s-1. The associated structural changes were studied by TEM observations. The results show that stress level decreases with deformation temperature increasing and strain rate decreasing, which can be represented by a Zener–Hollomon parameter in an exponent-type equation with hot deformation activation energy Q of 172.56 kJ·mol-1.Dynamic recovery occurs easily when strain rates are less than 10.00 s-1. Dynamic recrystallization can occur at strain rate of 10.00 s-1.