The FEM model of TiBN and TiBN/TiN coated cutting tool in milling of H13 steel w as developed. Process variables such as temperature and stress in the coating l ayer as well as in the substrate were analyzed. The eff...The FEM model of TiBN and TiBN/TiN coated cutting tool in milling of H13 steel w as developed. Process variables such as temperature and stress in the coating l ayer as well as in the substrate were analyzed. The efficacy of the present FEM analysis was verified by conducting controlled milling experiments on AISI H13 t o collect the relevant tool life and force data.The results show that the stress in a coated tool can significantly be reduced compared to an uncoated cutting t ool,possibly due to surface coatings improving the tribological properties of cu tting tools.Coatings with good thermal properties also help to improve the therm al behavior of cutting tool.展开更多
基金Funded by the National Natural Science Foundation of China (No.50465003) the Natural Science Foundation of Jiangxi Province (No.0350005) the State Key Laboratory Foundation of Die Technology at Huazhong University of Science and Technology (No.04 8)
文摘The FEM model of TiBN and TiBN/TiN coated cutting tool in milling of H13 steel w as developed. Process variables such as temperature and stress in the coating l ayer as well as in the substrate were analyzed. The efficacy of the present FEM analysis was verified by conducting controlled milling experiments on AISI H13 t o collect the relevant tool life and force data.The results show that the stress in a coated tool can significantly be reduced compared to an uncoated cutting t ool,possibly due to surface coatings improving the tribological properties of cu tting tools.Coatings with good thermal properties also help to improve the therm al behavior of cutting tool.