Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al inte...Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.展开更多
基金the financial supports from the S&T Program of Hebei Province,China(No.20373901D)the National Natural Science Foundation of China(Nos.51807047,51804095)+2 种基金the National Science Foundation of Hebei Province,China(No.E2019402433)the Youth Top Talents Science and Technology Research Project of Hebei Province University,China(No.BJ2019003)the Research and Development Project of Science and Technology of Handan City,China(No.19422111008-19).
文摘Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.