The goal of the present work was to optimize the phase-structural composition and microstructure of binary Ti0.8-0.9V0.2-0.1 alloys with respect to their hydrogen sorption properties. Application of these alloys is fo...The goal of the present work was to optimize the phase-structural composition and microstructure of binary Ti0.8-0.9V0.2-0.1 alloys with respect to their hydrogen sorption properties. Application of these alloys is for hydrogen absorption from gaseous mixtures containing substantial amounts of carbon monoxide (CO) at high temperatures. Irrespective of alloy composition, both α(HCP) and β(BCC) phases in Ti0.8-0.9V0.2-0.1 formed single phase FCC hydrides upon hydrogenation in pure H2. An in situ synchrotron X-ray diffraction study showed that only the β-phase transformed to the corresponding hydride when the alloy was hydrogenated in a mixture of H2+10%CO. Rapid solidification (RS) of the alloy resulted in refined grain sizes both in the Ti0.8V0.2 and Ti0.9V0.1 alloys. Furthermore, RS was found to increase the β-phase fraction in Ti0.9V0.1, being twice larger than that of the as-cast alloy. Ti0.9V0.1 had a platelike microstructure as observed by scanning electron microscopy (SEM), the plates were about 300 nm thick. The microstructure refinement resulted in a faster kinetics of H desorption as observed by temperature desorption spectroscopy (TDS).展开更多
The hydrogen storage performance of single BCC phase Ti-V-based alloys was investigated. A hydrogen absorption capacity of 4.2% was achieved at 293 K at a modest pressure(3 MPa) for Ti-40V-10Cr-10Mn alloy. The effecti...The hydrogen storage performance of single BCC phase Ti-V-based alloys was investigated. A hydrogen absorption capacity of 4.2% was achieved at 293 K at a modest pressure(3 MPa) for Ti-40V-10Cr-10Mn alloy. The effective hydrogen capacity of this alloy is 2.6% at 353 K. Moreover, the alloy exhibits a better activation property and flatter hydrogen absorption-desorption plateau. In order to meet different practical application needs, a series of Ti-V-based alloys with various PCT plateau pressures could be obtained by varying the element contents of the alloys, which opened the hope to bring Ti-V-based alloy into reaching the practical application for onboard hydrogen storage systems in fuel cell powered vehicles.展开更多
基金Project "Integrated Process for Hydrogen Production and Separation" supported by Norwegian Research Council and Statoil, Norway
文摘The goal of the present work was to optimize the phase-structural composition and microstructure of binary Ti0.8-0.9V0.2-0.1 alloys with respect to their hydrogen sorption properties. Application of these alloys is for hydrogen absorption from gaseous mixtures containing substantial amounts of carbon monoxide (CO) at high temperatures. Irrespective of alloy composition, both α(HCP) and β(BCC) phases in Ti0.8-0.9V0.2-0.1 formed single phase FCC hydrides upon hydrogenation in pure H2. An in situ synchrotron X-ray diffraction study showed that only the β-phase transformed to the corresponding hydride when the alloy was hydrogenated in a mixture of H2+10%CO. Rapid solidification (RS) of the alloy resulted in refined grain sizes both in the Ti0.8V0.2 and Ti0.9V0.1 alloys. Furthermore, RS was found to increase the β-phase fraction in Ti0.9V0.1, being twice larger than that of the as-cast alloy. Ti0.9V0.1 had a platelike microstructure as observed by scanning electron microscopy (SEM), the plates were about 300 nm thick. The microstructure refinement resulted in a faster kinetics of H desorption as observed by temperature desorption spectroscopy (TDS).
文摘The hydrogen storage performance of single BCC phase Ti-V-based alloys was investigated. A hydrogen absorption capacity of 4.2% was achieved at 293 K at a modest pressure(3 MPa) for Ti-40V-10Cr-10Mn alloy. The effective hydrogen capacity of this alloy is 2.6% at 353 K. Moreover, the alloy exhibits a better activation property and flatter hydrogen absorption-desorption plateau. In order to meet different practical application needs, a series of Ti-V-based alloys with various PCT plateau pressures could be obtained by varying the element contents of the alloys, which opened the hope to bring Ti-V-based alloy into reaching the practical application for onboard hydrogen storage systems in fuel cell powered vehicles.