The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc meltin...The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.展开更多
Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex(x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isot...Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex(x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isotherm measurements.The results indicated that Ce addition was a useful way to improve the flatness of the plateau and increase hydrogen storage capacity of Ti24Cr17.5V50Fe8.5 alloy.It was indicated that both homogenization of composition and increase of hydrogen diffusion coefficient were the main reasons for improving the hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex alloys.展开更多
A new cluster line approach for the composition rule of Laves phase-related BCC solid solution hydrogen-storage alloys was presented. The cluster line in a ternary phase diagram refers to a straight composition line l...A new cluster line approach for the composition rule of Laves phase-related BCC solid solution hydrogen-storage alloys was presented. The cluster line in a ternary phase diagram refers to a straight composition line linking a specific binary cluster to the third element. In the Laves phase-related BCC solid solution alloy system such as Ti-Cr-V, Ti-Cr tends to form binary Cr2Ti Laves phase while Ti-V and Cr-V to form solid solutions. This Laves phase is characterized by a close-packing icosahedral cluster Cr7Ti6. A cluster line Cr7Ti6-V is then constructed in this system. Alloy rods with a diameter of 3 mm of compositions along this line were prepared by copper-mould suction method. The alloy structure is found to vary with the V contents. Furthermore, the P-C-T measurements indicate that the cluster-line (Cr7Ti6)1-xVx alloys have large hydrogen storage capacities.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51171035 and 11174044)
文摘The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.
基金supported by Hi-Tech Research and Development Program of China (2006AA05Z144)
文摘Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex(x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isotherm measurements.The results indicated that Ce addition was a useful way to improve the flatness of the plateau and increase hydrogen storage capacity of Ti24Cr17.5V50Fe8.5 alloy.It was indicated that both homogenization of composition and increase of hydrogen diffusion coefficient were the main reasons for improving the hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex alloys.
基金This project was financially supported by the National Natural Science Foundation of China (No.50401020)by a Joint Research Funding of Dalian University of Technology and Dalian Institute of Chemical Physics.
文摘A new cluster line approach for the composition rule of Laves phase-related BCC solid solution hydrogen-storage alloys was presented. The cluster line in a ternary phase diagram refers to a straight composition line linking a specific binary cluster to the third element. In the Laves phase-related BCC solid solution alloy system such as Ti-Cr-V, Ti-Cr tends to form binary Cr2Ti Laves phase while Ti-V and Cr-V to form solid solutions. This Laves phase is characterized by a close-packing icosahedral cluster Cr7Ti6. A cluster line Cr7Ti6-V is then constructed in this system. Alloy rods with a diameter of 3 mm of compositions along this line were prepared by copper-mould suction method. The alloy structure is found to vary with the V contents. Furthermore, the P-C-T measurements indicate that the cluster-line (Cr7Ti6)1-xVx alloys have large hydrogen storage capacities.