With the latest configuration,the Ti:Sa laser system ARCTURUS(Düsseldorf University,Germany)operates with a double-chirped pulse amplification(CPA)architecture delivering pulses with an energy of 7 J before compr...With the latest configuration,the Ti:Sa laser system ARCTURUS(Düsseldorf University,Germany)operates with a double-chirped pulse amplification(CPA)architecture delivering pulses with an energy of 7 J before compression in each of the two high-power beams.By the implementation of a plasma mirror system,the intrinsic laser contrast is enhanced up to 10^-12 on a time scale of hundreds of picoseconds,before the main peak.The laser system has been used in various configurations for advanced experiments and different studies have been carried out employing the high-power laser beams as a single,high-intensity interaction beam(I≈1020 W/cm^2),in dual-and multi-beam configurations or in a pump–probe arrangement.展开更多
High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density...High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.展开更多
基金supported by the DFG Transregio SFB/TR18 and GRK 1203 programs
文摘With the latest configuration,the Ti:Sa laser system ARCTURUS(Düsseldorf University,Germany)operates with a double-chirped pulse amplification(CPA)architecture delivering pulses with an energy of 7 J before compression in each of the two high-power beams.By the implementation of a plasma mirror system,the intrinsic laser contrast is enhanced up to 10^-12 on a time scale of hundreds of picoseconds,before the main peak.The laser system has been used in various configurations for advanced experiments and different studies have been carried out employing the high-power laser beams as a single,high-intensity interaction beam(I≈1020 W/cm^2),in dual-and multi-beam configurations or in a pump–probe arrangement.
文摘High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.