Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
用IFUS(Induction Field Up-shift Method)方法生长了浓度高,光学质量好的Ti:Al_2O_3单晶,通过测量Ti^(3+)离子的吸收,激发,荧光光谱以及荧光寿命,分析研究了Ti:Al_2O_3单晶的发光特性和发光谱随温度的变化,(τFluo=3.1μs,300K;β=[Ti^...用IFUS(Induction Field Up-shift Method)方法生长了浓度高,光学质量好的Ti:Al_2O_3单晶,通过测量Ti^(3+)离子的吸收,激发,荧光光谱以及荧光寿命,分析研究了Ti:Al_2O_3单晶的发光特性和发光谱随温度的变化,(τFluo=3.1μs,300K;β=[Ti^(3+)]/[Ti]=0.999,αm/αr=380,α488nm=9.5cm^(-1)。展开更多
The influence of Mo on the microstructure,bending strength and HV of Ti/Al 2O 3 composite was studied,and the influence mechanism was analyzed.The results indicate that after the addition of Mo,the composite organiz...The influence of Mo on the microstructure,bending strength and HV of Ti/Al 2O 3 composite was studied,and the influence mechanism was analyzed.The results indicate that after the addition of Mo,the composite organization is finer and phases distribution is better-proportioned which make the microstructure denser,the bending strength and HV of composite are also increased to a degree.But the bending strength increases first then decreases with the increasing of Mo content,so the appropriate Mo content for the Ti/Al 2O 3 composite is to be further confirmed.展开更多
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘用IFUS(Induction Field Up-shift Method)方法生长了浓度高,光学质量好的Ti:Al_2O_3单晶,通过测量Ti^(3+)离子的吸收,激发,荧光光谱以及荧光寿命,分析研究了Ti:Al_2O_3单晶的发光特性和发光谱随温度的变化,(τFluo=3.1μs,300K;β=[Ti^(3+)]/[Ti]=0.999,αm/αr=380,α488nm=9.5cm^(-1)。
文摘The influence of Mo on the microstructure,bending strength and HV of Ti/Al 2O 3 composite was studied,and the influence mechanism was analyzed.The results indicate that after the addition of Mo,the composite organization is finer and phases distribution is better-proportioned which make the microstructure denser,the bending strength and HV of composite are also increased to a degree.But the bending strength increases first then decreases with the increasing of Mo content,so the appropriate Mo content for the Ti/Al 2O 3 composite is to be further confirmed.