The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine...The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine grained austenite was attributed to the high density of austenite nucleation at the ferrite/martensite structure and to the inhibition of austenite growth by (Ti~ V)C particles at the relatively low reheating temperature. Corresponding with the precipitation behavior of (Ti,V)C with temperature, the growth behavior of austenite in the vanadium mi- croalloyed steel could be divided into two regions. At lower reheating temperature, austenite grains grew slowly, and ultra-fine grained austenite smaller than 5 ~m was successfully obtained. By contrast, the austenite grains grew rap- idly at high temperature due to the dissolution of (Ti, V)C particles. According to the measured and predicted results of austenite growth kinetics, two models were developed to describe the growth behavior of austenite grains in two different temperature regions, and the apparent activation energy Qapp for grain growth was estimated to be about 115 and 195 kJ/mol, respectively.展开更多
TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations ...TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.展开更多
基金Item Sponsored by National Basic Research Program of China(2010CB630805)National Natural Science Foundation of China(51201036)China Iron and Steel Research Institute Group(12060840A)
文摘The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine grained austenite was attributed to the high density of austenite nucleation at the ferrite/martensite structure and to the inhibition of austenite growth by (Ti~ V)C particles at the relatively low reheating temperature. Corresponding with the precipitation behavior of (Ti,V)C with temperature, the growth behavior of austenite in the vanadium mi- croalloyed steel could be divided into two regions. At lower reheating temperature, austenite grains grew slowly, and ultra-fine grained austenite smaller than 5 ~m was successfully obtained. By contrast, the austenite grains grew rap- idly at high temperature due to the dissolution of (Ti, V)C particles. According to the measured and predicted results of austenite growth kinetics, two models were developed to describe the growth behavior of austenite grains in two different temperature regions, and the apparent activation energy Qapp for grain growth was estimated to be about 115 and 195 kJ/mol, respectively.
文摘TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.