In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of photosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransf...In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of photosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPAT) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.6% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ (PSⅡ) photochemistry (Fv/Fm), actual photochemical efficiency of PSll in the light (ФPSⅡ) and net photosynthetic rate (Pn) of the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSⅡ in transgenic tobacco compared with wild-type plants, the entire capability of PSⅡ recovered faster in transgenic tobacco, which was shown in the parameters of PI, Fv/Fm and ФPSⅡ, as a result, the recovery of Pn was accelerated. Conclusively, we proposed that the increase in saturated extent of thylakoid membrane lipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.展开更多
Temperature is one of the abiotic factors limiting growth and productivity of plants. In the present work, the effect of low non-freezing temperature, as an inducer of "chilling resistance", was studied in three cul...Temperature is one of the abiotic factors limiting growth and productivity of plants. In the present work, the effect of low non-freezing temperature, as an inducer of "chilling resistance", was studied in three cultivars of rice (Oryza sativa L.), japonica cv. 9516 (j-9516), the two parental lines of superhigh-yield hybrid rice between subspecies, Peiai/E32 (ji-PE), and the traditional indica hybrid rice Shanyou 63 (i-SY63). Leaves of chill-treated rice showed chilling-induced resistance, as an increase of their low-temperature tolerance was measured using chlorophyll fluorescence measurements, revealing a change in photosystem II (PSII) efficiency. After 5 d of exposure to 11 ~C under low light (100 pmol·m^-2·s^-1), levels of unsaturated fatty acids in PSII thylakoid membrane lipids decreased during the initial 1-2 d, then increased slowly and reached 99.2%, 95.3% and 90.1% of the initial value (0 d) in j-9516, ji-PE and i-SY63, respectively, on the fifth day. However, under medium light (600 μmol·m^-2·s^-1), all cultivars experienced similar substantial photoinhibition, which approached steady state levels after a decline in levels of unsaturated fatty acids in PSII thylakoid membrane lipids to about 57.1%, 53.8% and 44.5% of the initial values (0 d) in j-9516, ji-PE and i-SY63 on the fifth day. Under either chilling-induced resistance (the former) or low temperature photoinhibition (the latter) conditions, the changes of other physiological parameters such as D1 protein contents, electron transport activities of PSII (ETA), Fv/Fm, xanthophyl cycle activities expressed by DES (deepoxide state) were consistent with that of levels of unsaturated fatty acids in PSII thylakoid membrane lipids. So there were negative correlations between saturated levels of fatty acids (16:1(3t), 16:0, 18:0), especially the 16:1(3t) fatty acid on thylakoid membrane and other physiological parameters, such as D1 protein contents, ETA and (A+Z)/(展开更多
Wheat(Triticum aestivum L.) lines T1, T4, and T6 were genetically modified to increase glycine betaine(GB) synthesis by introduction of the BADH(betaine aldehyde dehydrogenase, BADH)gene from mountain spinach(Atriplex...Wheat(Triticum aestivum L.) lines T1, T4, and T6 were genetically modified to increase glycine betaine(GB) synthesis by introduction of the BADH(betaine aldehyde dehydrogenase, BADH)gene from mountain spinach(Atriplex hortensis L.). These transgenic lines and WT of wheat(T. aestivum L.) were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L-1Na Cl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate(Pn), stomatal conductance(Gs),maximum photochemical efficiency of PSII(Fv/Fm), and actual photochemical efficiency of PSII(ФPSII) and an increase in intercellular CO2concentration(Ci). In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.展开更多
The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and ...The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and nuclear-encoded proteins. During the past few years, extensive proteomic and genetic research on the higher plant NDH complex has been carried out, resulting in identification of several novel nuclear-encoded subunits. In addition, a number of auxiliary proteins, which mainly regulate the expression of chloroplast-encoded ndh genes as well as the assembly and stabilization of the NDH complex, have been discovered and characterized. In the absence of detailed crystallographic data, the structure of the NDH complex has remained obscure, and therefore the role of several NDH-associated nuclear-encoded proteins either as auxiliary proteins or structural subunits remains uncertain. In this review, we summarize the current knowledge on the subunit composition and assembly process of the chloroplast NDH complex. In addition, a novel oligomeric structure of NDH, the PSI/NDH supercomplex, is discussed.展开更多
Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and shoul...Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, andvolume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca^2+ and reactive oxygen species signaling.展开更多
All members of the YidC/Oxal/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform o...All members of the YidC/Oxal/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform of Alb3, named Alb4. Analysis of Arabidopsis knockout mutant lines shows that AIb4 is required in assembly and/or stability of the CF1CF0-ATP synthase (ATPase). alb4 mutant lines not only have reduced steady-state levels of ATPase subunits, but also their assembly into high-molecular-mass complexes is altered, leading to a reduction of ATP synthesis in the mutants. Moreover, we show that Alb4 but not AIb3 physically interacts with the subunits CF1β and CF0ll. Summarizing, the data indicate that AIb4 functions to stabilize or promote assembly of CF1 during its attachment to the membrane-embedded CF0 part.展开更多
In artificial photosynthesis systems,synthetic diiron complexes are popular[FeFe]-hydrogenase mimics,which are attractive for the fabrication of photocatalyst-protein hybrid structures to amplify hydrogen(H2)generatio...In artificial photosynthesis systems,synthetic diiron complexes are popular[FeFe]-hydrogenase mimics,which are attractive for the fabrication of photocatalyst-protein hybrid structures to amplify hydrogen(H2)generation capability.However,constructing a highly bionic and efficient catalytic hybrid system is a major challenge.Notably,we designed an ideal hybrid nanofibrils system that incorporates the crucial components:(1)a[FeFe]-H2ase mimic,which has a three-arm architecture(named triFeFe)for more interaction sites and higher catalytic activity and(2)uniform hybrid nanofibrils as the biological environment in which cysteine-catalyst coordination and the hydrogen-bonding network play a vital role in both catalyst binding and hydrogen evolution reaction activity.The assembled hybrid nanofibrils achieve efficient H2 generation with a turnover number of 2.3×103,outperforming previously reported diiron catalyst-protein hybrid systems.Additionally,the hybrid nanofibrils work with photosynthetic thylakoids to produce H2,without extra photosensitizers or electron shuttle proteins,which advances the bioengineering of living systems for solar-driven biofuel production.展开更多
In plant chloroplasts,photosystem II(PSII)complexes,together with light-harvesting complex II(LHCII),form various PSII-LHCII supercomplexes(SCs).This process likely involves immunophilins,but the underlying regulatory...In plant chloroplasts,photosystem II(PSII)complexes,together with light-harvesting complex II(LHCII),form various PSII-LHCII supercomplexes(SCs).This process likely involves immunophilins,but the underlying regulatory mechanisms are unclear.Here,by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28(CYP28)to wildtype and transgenic complemented lines,we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs.Compared to the wild type,cyp28 plants showed accelerated leaf growth,earlier flowering time,and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions.The lack of CYP28 also significantly affected the electron transport rate.Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants.Peptidyl-prolyl cis/trans isomerase(PPIase)activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity.Mutant analysis suggested that CYP28 may regulate PSIILHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity.Furthermore,the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation.Therefore,our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.展开更多
基金the Early Stage of China Key Development Project for BasicResearch (CB116208)the National Natural Science Foundation of China(30471053)the Shandong Provincial Natural Science Foundation ofChina (Y2007D50).
文摘In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of photosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPAT) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.6% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ (PSⅡ) photochemistry (Fv/Fm), actual photochemical efficiency of PSll in the light (ФPSⅡ) and net photosynthetic rate (Pn) of the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSⅡ in transgenic tobacco compared with wild-type plants, the entire capability of PSⅡ recovered faster in transgenic tobacco, which was shown in the parameters of PI, Fv/Fm and ФPSⅡ, as a result, the recovery of Pn was accelerated. Conclusively, we proposed that the increase in saturated extent of thylakoid membrane lipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.
基金Supported by the National Natural Science Foundation of China (30270794) and the Jiangsu Provincial Natural Science Foundation of China (BK2005041).
文摘Temperature is one of the abiotic factors limiting growth and productivity of plants. In the present work, the effect of low non-freezing temperature, as an inducer of "chilling resistance", was studied in three cultivars of rice (Oryza sativa L.), japonica cv. 9516 (j-9516), the two parental lines of superhigh-yield hybrid rice between subspecies, Peiai/E32 (ji-PE), and the traditional indica hybrid rice Shanyou 63 (i-SY63). Leaves of chill-treated rice showed chilling-induced resistance, as an increase of their low-temperature tolerance was measured using chlorophyll fluorescence measurements, revealing a change in photosystem II (PSII) efficiency. After 5 d of exposure to 11 ~C under low light (100 pmol·m^-2·s^-1), levels of unsaturated fatty acids in PSII thylakoid membrane lipids decreased during the initial 1-2 d, then increased slowly and reached 99.2%, 95.3% and 90.1% of the initial value (0 d) in j-9516, ji-PE and i-SY63, respectively, on the fifth day. However, under medium light (600 μmol·m^-2·s^-1), all cultivars experienced similar substantial photoinhibition, which approached steady state levels after a decline in levels of unsaturated fatty acids in PSII thylakoid membrane lipids to about 57.1%, 53.8% and 44.5% of the initial values (0 d) in j-9516, ji-PE and i-SY63 on the fifth day. Under either chilling-induced resistance (the former) or low temperature photoinhibition (the latter) conditions, the changes of other physiological parameters such as D1 protein contents, electron transport activities of PSII (ETA), Fv/Fm, xanthophyl cycle activities expressed by DES (deepoxide state) were consistent with that of levels of unsaturated fatty acids in PSII thylakoid membrane lipids. So there were negative correlations between saturated levels of fatty acids (16:1(3t), 16:0, 18:0), especially the 16:1(3t) fatty acid on thylakoid membrane and other physiological parameters, such as D1 protein contents, ETA and (A+Z)/(
基金supported by National Natural Science Foundation of China (No. 31370304)the Opening Foundation of the State Key Laboratory ofCrop Biology (No 2013KF01)funded by the Education Department of Henan Province (No. 14A180036)
文摘Wheat(Triticum aestivum L.) lines T1, T4, and T6 were genetically modified to increase glycine betaine(GB) synthesis by introduction of the BADH(betaine aldehyde dehydrogenase, BADH)gene from mountain spinach(Atriplex hortensis L.). These transgenic lines and WT of wheat(T. aestivum L.) were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L-1Na Cl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate(Pn), stomatal conductance(Gs),maximum photochemical efficiency of PSII(Fv/Fm), and actual photochemical efficiency of PSII(ФPSII) and an increase in intercellular CO2concentration(Ci). In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.
文摘The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and nuclear-encoded proteins. During the past few years, extensive proteomic and genetic research on the higher plant NDH complex has been carried out, resulting in identification of several novel nuclear-encoded subunits. In addition, a number of auxiliary proteins, which mainly regulate the expression of chloroplast-encoded ndh genes as well as the assembly and stabilization of the NDH complex, have been discovered and characterized. In the absence of detailed crystallographic data, the structure of the NDH complex has remained obscure, and therefore the role of several NDH-associated nuclear-encoded proteins either as auxiliary proteins or structural subunits remains uncertain. In this review, we summarize the current knowledge on the subunit composition and assembly process of the chloroplast NDH complex. In addition, a novel oligomeric structure of NDH, the PSI/NDH supercomplex, is discussed.
文摘Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, andvolume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca^2+ and reactive oxygen species signaling.
文摘All members of the YidC/Oxal/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform of Alb3, named Alb4. Analysis of Arabidopsis knockout mutant lines shows that AIb4 is required in assembly and/or stability of the CF1CF0-ATP synthase (ATPase). alb4 mutant lines not only have reduced steady-state levels of ATPase subunits, but also their assembly into high-molecular-mass complexes is altered, leading to a reduction of ATP synthesis in the mutants. Moreover, we show that Alb4 but not AIb3 physically interacts with the subunits CF1β and CF0ll. Summarizing, the data indicate that AIb4 functions to stabilize or promote assembly of CF1 during its attachment to the membrane-embedded CF0 part.
基金the National Natural Science Foundation of China(grant nos.22077065,22021002,and 22277054)the National Key R&D Program of China(grant no.2018YFE0200700)+1 种基金the China Postdoctoral Science Foundation(grant no.2021M703264)the Beijing National Laboratory for Molecular Sciences for financial support.
文摘In artificial photosynthesis systems,synthetic diiron complexes are popular[FeFe]-hydrogenase mimics,which are attractive for the fabrication of photocatalyst-protein hybrid structures to amplify hydrogen(H2)generation capability.However,constructing a highly bionic and efficient catalytic hybrid system is a major challenge.Notably,we designed an ideal hybrid nanofibrils system that incorporates the crucial components:(1)a[FeFe]-H2ase mimic,which has a three-arm architecture(named triFeFe)for more interaction sites and higher catalytic activity and(2)uniform hybrid nanofibrils as the biological environment in which cysteine-catalyst coordination and the hydrogen-bonding network play a vital role in both catalyst binding and hydrogen evolution reaction activity.The assembled hybrid nanofibrils achieve efficient H2 generation with a turnover number of 2.3×103,outperforming previously reported diiron catalyst-protein hybrid systems.Additionally,the hybrid nanofibrils work with photosynthetic thylakoids to produce H2,without extra photosensitizers or electron shuttle proteins,which advances the bioengineering of living systems for solar-driven biofuel production.
基金supported by the National Natural Science Foundation of China(31700206)the Natural Science Basic Research Program of Shaanxi(2016JM3023)the Special Scientific Research Project of Education Department of Shaanxi Province(16JK1792)。
文摘In plant chloroplasts,photosystem II(PSII)complexes,together with light-harvesting complex II(LHCII),form various PSII-LHCII supercomplexes(SCs).This process likely involves immunophilins,but the underlying regulatory mechanisms are unclear.Here,by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28(CYP28)to wildtype and transgenic complemented lines,we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs.Compared to the wild type,cyp28 plants showed accelerated leaf growth,earlier flowering time,and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions.The lack of CYP28 also significantly affected the electron transport rate.Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants.Peptidyl-prolyl cis/trans isomerase(PPIase)activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity.Mutant analysis suggested that CYP28 may regulate PSIILHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity.Furthermore,the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation.Therefore,our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.