由于气温突变点的影响,负荷序列存在门限效应,导致传统线性时间序列模型的负荷预测效果较差。将气温突变点作为门限,建立了以气温为协变量的门限自回归移动平均(threshold autoregressive moving average with exogenous variable,TARM...由于气温突变点的影响,负荷序列存在门限效应,导致传统线性时间序列模型的负荷预测效果较差。将气温突变点作为门限,建立了以气温为协变量的门限自回归移动平均(threshold autoregressive moving average with exogenous variable,TARMAX)模型,提高了预测精度。首先,应用马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法对气温突变点进行搜寻得到模型参数。然后,采用随机搜索变量的方法快速选择出最优模型,有效降低选择时间序列模型的计算量。最后,对不同季节下的居民日用电负荷进行预测。实例表明,与线性时间序列模型、长短期记忆网络(long short-term memory network,LSTM)和多层感知机(multilayer perceptron,MLP)相比,TARMAX模型提高了电力负荷的预测精度。展开更多
针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗...针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM))。将所提模型应用于开源SECOM数据集,验证了所提方法的有效性。展开更多
文摘由于气温突变点的影响,负荷序列存在门限效应,导致传统线性时间序列模型的负荷预测效果较差。将气温突变点作为门限,建立了以气温为协变量的门限自回归移动平均(threshold autoregressive moving average with exogenous variable,TARMAX)模型,提高了预测精度。首先,应用马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法对气温突变点进行搜寻得到模型参数。然后,采用随机搜索变量的方法快速选择出最优模型,有效降低选择时间序列模型的计算量。最后,对不同季节下的居民日用电负荷进行预测。实例表明,与线性时间序列模型、长短期记忆网络(long short-term memory network,LSTM)和多层感知机(multilayer perceptron,MLP)相比,TARMAX模型提高了电力负荷的预测精度。
文摘针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM))。将所提模型应用于开源SECOM数据集,验证了所提方法的有效性。