设计并实现了一种适用于X波段(11-12 GHz)的高性能低噪声放大器(LNA),该低噪声放大器选用Ga As FET(MGF4941AL)低噪声半导体管,采用三级级联的方式设计,三级通过采用不同静态工作点之间的配合,达到降低放大器噪声提高增益的目的...设计并实现了一种适用于X波段(11-12 GHz)的高性能低噪声放大器(LNA),该低噪声放大器选用Ga As FET(MGF4941AL)低噪声半导体管,采用三级级联的方式设计,三级通过采用不同静态工作点之间的配合,达到降低放大器噪声提高增益的目的。利用微波电路仿真软件ADS仿真优化后加工实物并测试。测试结果表明,低噪声放大器在11-12 GHz工作频带内的噪声系数小于2dB,输入/输出驻波比(VSWR)小于2,功率增益大于30 d B,增益平坦度小于1.5 d B,适用于X波段接收机前端。展开更多
针对双波段低噪声放大电路设计存在的多级匹配问题,提出一种解决双波段多级低噪放匹配的方法.首先根据每一级低噪放指标要求设置优化参数,找到输入输出最佳阻抗值,然后用串联微带线和并联微带枝节将双波段LNA的每一级输入输出阻抗值匹配...针对双波段低噪声放大电路设计存在的多级匹配问题,提出一种解决双波段多级低噪放匹配的方法.首先根据每一级低噪放指标要求设置优化参数,找到输入输出最佳阻抗值,然后用串联微带线和并联微带枝节将双波段LNA的每一级输入输出阻抗值匹配到50,最后将其级联,从而实现了双波段三级LNA的设计.仿真结果表明:该低噪声放大器在2.69 GHz和3.5 GHz频点处匹配良好,噪声系数小于1 d B,S11和S22都小于-20 d B,增益大于40 d B,从而能同时传输2个非同步信号,提高了频谱利用率,并减少了带外噪声干扰.展开更多
Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference t...Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.展开更多
We seek to analyze a three-level cascade laser with a pair of nonlinearly coupled waveguides inside the cavity. Applying the pertinent master equation, we investigate the squeezing and entanglement properties intracav...We seek to analyze a three-level cascade laser with a pair of nonlinearly coupled waveguides inside the cavity. Applying the pertinent master equation, we investigate the squeezing and entanglement properties intracavity produced by our system. It is shown that with the help of nonlinearly coupled waveguides highly squeezed as well as macroscopic entangled light with high intensity can be achieved.展开更多
文摘设计并实现了一种适用于X波段(11-12 GHz)的高性能低噪声放大器(LNA),该低噪声放大器选用Ga As FET(MGF4941AL)低噪声半导体管,采用三级级联的方式设计,三级通过采用不同静态工作点之间的配合,达到降低放大器噪声提高增益的目的。利用微波电路仿真软件ADS仿真优化后加工实物并测试。测试结果表明,低噪声放大器在11-12 GHz工作频带内的噪声系数小于2dB,输入/输出驻波比(VSWR)小于2,功率增益大于30 d B,增益平坦度小于1.5 d B,适用于X波段接收机前端。
文摘针对双波段低噪声放大电路设计存在的多级匹配问题,提出一种解决双波段多级低噪放匹配的方法.首先根据每一级低噪放指标要求设置优化参数,找到输入输出最佳阻抗值,然后用串联微带线和并联微带枝节将双波段LNA的每一级输入输出阻抗值匹配到50,最后将其级联,从而实现了双波段三级LNA的设计.仿真结果表明:该低噪声放大器在2.69 GHz和3.5 GHz频点处匹配良好,噪声系数小于1 d B,S11和S22都小于-20 d B,增益大于40 d B,从而能同时传输2个非同步信号,提高了频谱利用率,并减少了带外噪声干扰.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574082)the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS050)
文摘Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.
基金Supported by the Natural Science Youth Teacher Foundation of Xuzhou Institute of Technology (Grant No. XKY2007317)
文摘We seek to analyze a three-level cascade laser with a pair of nonlinearly coupled waveguides inside the cavity. Applying the pertinent master equation, we investigate the squeezing and entanglement properties intracavity produced by our system. It is shown that with the help of nonlinearly coupled waveguides highly squeezed as well as macroscopic entangled light with high intensity can be achieved.