The mathematical model of the semiconductor device of heat conduction has been described by a system of four equations. The optimal order estimates in L2 norm are derived for the error in the approximates solution, pu...The mathematical model of the semiconductor device of heat conduction has been described by a system of four equations. The optimal order estimates in L2 norm are derived for the error in the approximates solution, putting fotward a kind of characteristic finite difference fractional step methods.展开更多
A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat...A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.展开更多
文摘The mathematical model of the semiconductor device of heat conduction has been described by a system of four equations. The optimal order estimates in L2 norm are derived for the error in the approximates solution, putting fotward a kind of characteristic finite difference fractional step methods.
文摘A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.