目的探讨3D打印技术辅助手术在复杂胫骨平台骨折治疗方面的优势及应用前景。方法回顾性分析2014年5月至2016年9月治疗41例(48膝)复杂胫骨平台骨折患者完整资料。根据术前是否行3D打印技术分为3D打印辅助手术组和传统手术组。3D打印辅...目的探讨3D打印技术辅助手术在复杂胫骨平台骨折治疗方面的优势及应用前景。方法回顾性分析2014年5月至2016年9月治疗41例(48膝)复杂胫骨平台骨折患者完整资料。根据术前是否行3D打印技术分为3D打印辅助手术组和传统手术组。3D打印辅助手术组18例(22膝),男12例,女6例;年龄16-68岁,平均(45.5±7.2)岁;骨折SehatzkerⅤ型12膝,SchatzkerⅥ型10膝。传统手术组23例(26膝),男15例,女8例;年龄19-69岁,平均(46.2±6.8)岁;骨折Schatzker Ⅴ型14膝,SchatzkerⅥ型12膝。术后对比两组单膝手术时间、术中出血量及术后6个月膝关节Rasmussen评分和纽约特种外科医院膝关节评分(hospital for special surgery knee score, HSS)。结果术后41例患者均获得随访,随访时间7~20个月,平均15个月。3D打印辅助手术组平均手术时间:SchatzkerⅤ型(81.4±6.3)min,SchatzkerⅥ型(90.6±15.4)min;平均术中出血量:SchatzkerⅤ型(200.4±72.3)ml,SchatzkerⅥ型(280.6±101.6)ml;术后6个月影像学Rasmussen评分:优14膝,良6膝,可2膝,优良率90.9%(20/22);HSS评分:优15膝,良5膝,可2膝,优良率90.9%(20/22)。传统手术组平均手术时间:SchatzkerⅤ型(100.4±15.3)min,SchatzkerⅥ型(111.5±20.2)min;平均术中出血量:SchatzkerⅤ型(450.4±173.3)ml,SchatzkerⅥ型(500.5±247.2)ml;术后6个月Rasmussen评分:优14膝,良8膝,可2膝,差2膝,优良率84.6%(22/26);HSS评分:优13膝,良8膝,可2膝,差3膝,优良率80.8%(21/26)。3D打印辅助手术组手术时间、术中出血量与传统手术组相比,差异有统计学意义;术后6个月Rasmussen及HSS评分与传统手术组相比,差异无统计学意义。结论3D打印技术辅助手术治疗复杂胫骨平台骨折与传统手术相比,可以明显缩短手术时间,减少展开更多
Critical-sized bone defect repair in patients with diabetes mellitus remains a challenge in clinical treatment because of dysfunction of macrophage polarization and the inflammatory microenvironment in the bone defect...Critical-sized bone defect repair in patients with diabetes mellitus remains a challenge in clinical treatment because of dysfunction of macrophage polarization and the inflammatory microenvironment in the bone defect region.Three-dimensional(3D)bioprinted scaffolds loaded with live cells and bioactive factors can improve cell viability and the inflammatory microenvironment and further accelerating bone repair.Here,we used modified bioinks comprising gelatin,gelatin methacryloyl(GelMA),and 4-arm poly(ethylene glycol)acrylate(PEG)to fabricate 3D bioprinted scaffolds containing BMSCs,RAW264.7 macrophages,and BMP-4-loaded mesoporous silica nanoparticles(MSNs).Addition of MSNs effectively improved the mechanical strength of GelMA/gelatin/PEG scaffolds.Moreover,MSNs sustainably released BMP-4 for long-term effectiveness.In 3D bioprinted scaffolds,BMP-4 promoted the polarization of RAW264.7 to M2 macrophages,which secrete anti-inflammatory factors and thereby reduce the levels of pro-inflammatory factors.BMP-4 released from MSNs and BMP-2 secreted from M2 macrophages collectively stimulated the osteogenic differentiation of BMSCs in the 3D bioprinted scaffolds.Furthermore,in calvarial critical-size defect models of diabetic rats,3D bioprinted scaffolds loaded with MSNs/BMP-4 induced M2 macrophage polarization and improved the inflammatory microenvironment.And 3D bioprinted scaffolds with MSNs/BMP-4,BMSCs,and RAW264.7 cells significantly accelerated bone repair.In conclusion,our results indicated that implanting 3D bioprinted scaffolds containing MSNs/BMP-4,BMSCs,and RAW264.7 cells in bone defects may be an effective method for improving diabetic bone repair,owing to the direct effects of BMP-4 on promoting osteogenesis of BMSCs and regulating M2 type macrophage polarization to improve the inflammatory microenvironment and secrete BMP-2.展开更多
Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is event...Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is eventually required.Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy.Bone tissue engineering based on engineered three-dimensional(3D)scaffolds with appropriate architecture and osteoconductive activity,alone or functionalized with bioactive factors,have been developed to enhance bone regeneration in osteonecrosis.In this review,we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis,including biocompatibility,degradability,porosity,and mechanical performance.In addition,we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice.展开更多
Bone defect repairs are based on bone graft fusion or replacement.Current large bone defect treatments are inadequate and lack of reliable technology.Therefore,we aimed to investigate a simple technique using three-di...Bone defect repairs are based on bone graft fusion or replacement.Current large bone defect treatments are inadequate and lack of reliable technology.Therefore,we aimed to investigate a simple technique using three-dimensional(3D)-printed individualized porous implants without any bone grafts,osteoinductive agents,or surface biofunctionalization to treat large bone defects,and systematically study its long-term therapeutic effects and osseointegration characteristics.Twenty-six patients with large bone defects caused by tumor,infection,or trauma received treatment with individualized porous implants;among them,three typical cases underwent a detailed study.Additionally,a large segmental femur defect sheep model was used to study the osseointegration characteristics.Immediate and long-term biomechanical stability was achieved,and the animal study revealed that the bone grew into the pores with gradual remodeling,resulting in a long-term mechanically stable implant-bone complex.Advantages of 3D-printed microporous implants for the repair of bone defects included 1)that the stabilization devices were immediately designed and constructed to achieve early postoperative mobility,and 2)that osseointegration between the host bone and implants was achieved without bone grafting.Our osseointegration method,in which the“implant-bone”interface fusion concept was used instead of“bone-bone”fusion,subverts the traditional idea of osseointegration.展开更多
目的评估应用3D打印人工椎体和3D打印椎间融合器(Cage)行颈前路椎间盘切除植骨融合术(anterior cervical disectomy and fusion,ACDF)联合颈前路椎体次全切除减压植骨融合术(anterior cervical corpectomy and fusion,ACCF)的临床效果...目的评估应用3D打印人工椎体和3D打印椎间融合器(Cage)行颈前路椎间盘切除植骨融合术(anterior cervical disectomy and fusion,ACDF)联合颈前路椎体次全切除减压植骨融合术(anterior cervical corpectomy and fusion,ACCF)的临床效果。方法回顾分析2018年5月—2019年12月收治并行ACCF联合ACDF治疗的29例多节段脊髓型颈椎病患者临床资料,其中13例采用3D打印人工椎体与3D打印Cage(3D打印组),16例采用钛网笼(titanium mesh cage,TMC)与Cage(TMC组)。两组患者性别、年龄、手术节段、Nurick分级、病程及术前日本骨科协会(JOA)评分、疼痛视觉模拟评分(VAS)、融合节段Cobb角等一般资料比较差异均无统计学意义(P>0.05)。记录并比较两组患者手术时间、术中出血量、住院时间、并发症及末次随访时植入物融合情况;术前、术后即刻、术后6个月及末次随访时,采用JOA评分评价神经功能改善情况并计算末次随访时改善率,采用VAS评分评价上肢和颈部疼痛改善情况,测量融合节段Cobb角并计算末次随访时与术后即刻的差值;术后即刻、术后6个月及末次随访时,测量融合节段椎体前缘高度(height of the anterior bord,HAB)和椎体后缘高度(height of the posterior bord,HPB),并计算植入物沉降发生率。结果3D打印组手术时间显著少于TMC组(t=3.336,P=0.002);两组住院时间和术中出血量比较差异均无统计学意义(P>0.05)。两组患者均获随访,随访时间12~19个月,平均16个月。两组术后均未发生明显并发症。重复测量方差分析示,JOA评分、VAS评分与Cobb角各时间点间差异均有统计学意义(P<0.05)。JOA评分中时间与组别有交互作用(F=3.705,P=0.025),随时间延长,3D打印组与TMC组JOA评分升高幅度不同,3D打印组升高幅度更大。VAS评分中时间与组别无交互作用(F=3.038,P=0.065),且两组间各时间点评分差异无统计学意义(F=0.173,P=0.681)。Cobb角的时间与组别有交互作用(F=15.5展开更多
文摘目的探讨3D打印技术辅助手术在复杂胫骨平台骨折治疗方面的优势及应用前景。方法回顾性分析2014年5月至2016年9月治疗41例(48膝)复杂胫骨平台骨折患者完整资料。根据术前是否行3D打印技术分为3D打印辅助手术组和传统手术组。3D打印辅助手术组18例(22膝),男12例,女6例;年龄16-68岁,平均(45.5±7.2)岁;骨折SehatzkerⅤ型12膝,SchatzkerⅥ型10膝。传统手术组23例(26膝),男15例,女8例;年龄19-69岁,平均(46.2±6.8)岁;骨折Schatzker Ⅴ型14膝,SchatzkerⅥ型12膝。术后对比两组单膝手术时间、术中出血量及术后6个月膝关节Rasmussen评分和纽约特种外科医院膝关节评分(hospital for special surgery knee score, HSS)。结果术后41例患者均获得随访,随访时间7~20个月,平均15个月。3D打印辅助手术组平均手术时间:SchatzkerⅤ型(81.4±6.3)min,SchatzkerⅥ型(90.6±15.4)min;平均术中出血量:SchatzkerⅤ型(200.4±72.3)ml,SchatzkerⅥ型(280.6±101.6)ml;术后6个月影像学Rasmussen评分:优14膝,良6膝,可2膝,优良率90.9%(20/22);HSS评分:优15膝,良5膝,可2膝,优良率90.9%(20/22)。传统手术组平均手术时间:SchatzkerⅤ型(100.4±15.3)min,SchatzkerⅥ型(111.5±20.2)min;平均术中出血量:SchatzkerⅤ型(450.4±173.3)ml,SchatzkerⅥ型(500.5±247.2)ml;术后6个月Rasmussen评分:优14膝,良8膝,可2膝,差2膝,优良率84.6%(22/26);HSS评分:优13膝,良8膝,可2膝,差3膝,优良率80.8%(21/26)。3D打印辅助手术组手术时间、术中出血量与传统手术组相比,差异有统计学意义;术后6个月Rasmussen及HSS评分与传统手术组相比,差异无统计学意义。结论3D打印技术辅助手术治疗复杂胫骨平台骨折与传统手术相比,可以明显缩短手术时间,减少
基金supported by National Key R&D Program of China(2018YFB1105600/2018YFC2002300/2018YFA0703000)National Natural Science Foundation of China(81772326/81702124/81902195)+3 种基金Fundamental research program funding of Ninth People's Hospital affiliated to Shanghai JiaoTong University School of Medicine(JYZZ070)Project of Shanghai Science and Technology Commission(18441903700/19XD1434200/18431903700/19441908700/19441917500)Translational Medicine Innovation Project of Shanghai Jiao Tong University School of Medicine(TM201613/TM201915)Project of Shanghai Jiading National Health and Family Planning Commission(KYXM 2018-KY-03).
文摘Critical-sized bone defect repair in patients with diabetes mellitus remains a challenge in clinical treatment because of dysfunction of macrophage polarization and the inflammatory microenvironment in the bone defect region.Three-dimensional(3D)bioprinted scaffolds loaded with live cells and bioactive factors can improve cell viability and the inflammatory microenvironment and further accelerating bone repair.Here,we used modified bioinks comprising gelatin,gelatin methacryloyl(GelMA),and 4-arm poly(ethylene glycol)acrylate(PEG)to fabricate 3D bioprinted scaffolds containing BMSCs,RAW264.7 macrophages,and BMP-4-loaded mesoporous silica nanoparticles(MSNs).Addition of MSNs effectively improved the mechanical strength of GelMA/gelatin/PEG scaffolds.Moreover,MSNs sustainably released BMP-4 for long-term effectiveness.In 3D bioprinted scaffolds,BMP-4 promoted the polarization of RAW264.7 to M2 macrophages,which secrete anti-inflammatory factors and thereby reduce the levels of pro-inflammatory factors.BMP-4 released from MSNs and BMP-2 secreted from M2 macrophages collectively stimulated the osteogenic differentiation of BMSCs in the 3D bioprinted scaffolds.Furthermore,in calvarial critical-size defect models of diabetic rats,3D bioprinted scaffolds loaded with MSNs/BMP-4 induced M2 macrophage polarization and improved the inflammatory microenvironment.And 3D bioprinted scaffolds with MSNs/BMP-4,BMSCs,and RAW264.7 cells significantly accelerated bone repair.In conclusion,our results indicated that implanting 3D bioprinted scaffolds containing MSNs/BMP-4,BMSCs,and RAW264.7 cells in bone defects may be an effective method for improving diabetic bone repair,owing to the direct effects of BMP-4 on promoting osteogenesis of BMSCs and regulating M2 type macrophage polarization to improve the inflammatory microenvironment and secrete BMP-2.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51973216,51873207,51803006, 51833010)the Science and Technology Development Program of Jilin Province(Grant No.20190201068JC)+3 种基金the Youth Talents Promotion Project of Jilin Province(Grant No.181909)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019005)the Special Foundation for Provincial Authorities from Finance Department of Jilin Province(Grant No.3D518V313429)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(Grant No.2020-KF-5).
文摘Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is eventually required.Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy.Bone tissue engineering based on engineered three-dimensional(3D)scaffolds with appropriate architecture and osteoconductive activity,alone or functionalized with bioactive factors,have been developed to enhance bone regeneration in osteonecrosis.In this review,we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis,including biocompatibility,degradability,porosity,and mechanical performance.In addition,we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice.
基金the grant from the Ministry of Science and Technology of the People’s Republic of China(grant number 2016YFB1101501)Beijing Municipal Science&Technology Commission(Project Z181100001718195)。
文摘Bone defect repairs are based on bone graft fusion or replacement.Current large bone defect treatments are inadequate and lack of reliable technology.Therefore,we aimed to investigate a simple technique using three-dimensional(3D)-printed individualized porous implants without any bone grafts,osteoinductive agents,or surface biofunctionalization to treat large bone defects,and systematically study its long-term therapeutic effects and osseointegration characteristics.Twenty-six patients with large bone defects caused by tumor,infection,or trauma received treatment with individualized porous implants;among them,three typical cases underwent a detailed study.Additionally,a large segmental femur defect sheep model was used to study the osseointegration characteristics.Immediate and long-term biomechanical stability was achieved,and the animal study revealed that the bone grew into the pores with gradual remodeling,resulting in a long-term mechanically stable implant-bone complex.Advantages of 3D-printed microporous implants for the repair of bone defects included 1)that the stabilization devices were immediately designed and constructed to achieve early postoperative mobility,and 2)that osseointegration between the host bone and implants was achieved without bone grafting.Our osseointegration method,in which the“implant-bone”interface fusion concept was used instead of“bone-bone”fusion,subverts the traditional idea of osseointegration.
文摘目的评估应用3D打印人工椎体和3D打印椎间融合器(Cage)行颈前路椎间盘切除植骨融合术(anterior cervical disectomy and fusion,ACDF)联合颈前路椎体次全切除减压植骨融合术(anterior cervical corpectomy and fusion,ACCF)的临床效果。方法回顾分析2018年5月—2019年12月收治并行ACCF联合ACDF治疗的29例多节段脊髓型颈椎病患者临床资料,其中13例采用3D打印人工椎体与3D打印Cage(3D打印组),16例采用钛网笼(titanium mesh cage,TMC)与Cage(TMC组)。两组患者性别、年龄、手术节段、Nurick分级、病程及术前日本骨科协会(JOA)评分、疼痛视觉模拟评分(VAS)、融合节段Cobb角等一般资料比较差异均无统计学意义(P>0.05)。记录并比较两组患者手术时间、术中出血量、住院时间、并发症及末次随访时植入物融合情况;术前、术后即刻、术后6个月及末次随访时,采用JOA评分评价神经功能改善情况并计算末次随访时改善率,采用VAS评分评价上肢和颈部疼痛改善情况,测量融合节段Cobb角并计算末次随访时与术后即刻的差值;术后即刻、术后6个月及末次随访时,测量融合节段椎体前缘高度(height of the anterior bord,HAB)和椎体后缘高度(height of the posterior bord,HPB),并计算植入物沉降发生率。结果3D打印组手术时间显著少于TMC组(t=3.336,P=0.002);两组住院时间和术中出血量比较差异均无统计学意义(P>0.05)。两组患者均获随访,随访时间12~19个月,平均16个月。两组术后均未发生明显并发症。重复测量方差分析示,JOA评分、VAS评分与Cobb角各时间点间差异均有统计学意义(P<0.05)。JOA评分中时间与组别有交互作用(F=3.705,P=0.025),随时间延长,3D打印组与TMC组JOA评分升高幅度不同,3D打印组升高幅度更大。VAS评分中时间与组别无交互作用(F=3.038,P=0.065),且两组间各时间点评分差异无统计学意义(F=0.173,P=0.681)。Cobb角的时间与组别有交互作用(F=15.5