This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite s...This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.展开更多
Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-c...Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-coal drawing test with shields and the controlled test without shields are performed in the condition without any boundary effect. Test results show that shields will cause reduction in drawing volume of coal in the LTCC mining. The deflection phenomenon of drawing body is also observed in the controlled test, which is verified that the deflection of drawing body is caused by shield. It is found that the deflection angle decreases with increasing caving height, with the maximum value of atailand the minimum value of 0. In addition, the formula to calculate the drawing volume is proposed subsequently.The deflection of drawing body is numerically simulated using particle flow code PFC3 Dand the proposed formula to calculate drawing volume in LTCC is also verified.展开更多
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ...This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ...The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
随着测绘地理信息、物联网、人工智能、第5代移动技术(5G)等新兴技术的发展,以三维手段对现实世界进行描述和管理已经成为可能。作为城市在区域范围内的缩影,园区的管理也应向精细化、智慧化方向发展。本文在大量三维地理信息系统(geogr...随着测绘地理信息、物联网、人工智能、第5代移动技术(5G)等新兴技术的发展,以三维手段对现实世界进行描述和管理已经成为可能。作为城市在区域范围内的缩影,园区的管理也应向精细化、智慧化方向发展。本文在大量三维地理信息系统(geographic information system,GIS)建设案例的基础上,对比目前主流的三维GIS平台的优劣势,选择适用于园区尺度的三维GIS平台,并开展三维智慧园区建设,实现智慧园区的三维规划、建设、运营全过程管理,推动园区管理体系和管理水平的现代化。展开更多
At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the punctur展开更多
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia...Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.展开更多
Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground su...Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface.Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.展开更多
Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and ...Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and synthesized a Fe-N decorated graphene nanosheet(Fe-N5/GN SAC)with the coordination number of five.Through enzymology and theoretical calculations,the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure.We explored its potential on lung cancer therapy,and found that it could kill human lung adenocarcinoma cells(A549)by decomposing hydrogen peroxide(H_(2)O_(2))into toxic reactive oxygen species(ROS)under acidic microenvironment in threedimensional(3D)lung cancer cell model.Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional ...The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional (3D) mesoporous nickel iron selenide with rose-like microsphere architecture was directly grown on Ni foam via a successive two-step hydrotherrnal method. The unique 3D mesoporous rose-like morphology leads to a higher number of active sites as well as fast mass and electron transport through the entire electrode, and facilitates the release of 02 bubbles formed during the OER catalysis. As a result, the synthesized Ni0.76Fe0.24Se exhibits superior OER performances, with an ultralow overpotential of 197 mV needed to produce a current density of 10 mA.cm-2 in 1 M KOH, outperforming all transition metal selenide OER catalysts reported to date.展开更多
In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due ...In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61273349, 61203223)
文摘This paper presents the cooperative strategies for salvo attack of multiple missiles based on the classical proportional navigation(PN) algorithm.The three-dimensional(3-D) guidance laws are developed in a quite simple formulation that consists of a PN component for target capture and a coordination component for simultaneous arrival.The centralized algorithms come into effect when the global information of time-to-go estimation is obtained, whereas the decentralized algorithms have better performance when each missile can only collect information from neighbors.Numerical simulations demonstrate that the proposed coordination algorithms are feasible to perform the cooperative engagement of multiple missiles against both stationary and maneuvering targets.The effectiveness of the 3-D guidance laws is also discussed.
基金financially supported by the Coal Joint Funds of the National Natural Science Foundation of China(No.U1361209)the National Basic Research Program of China(973 Program)(No.2013CB227903)
文摘Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-coal drawing test with shields and the controlled test without shields are performed in the condition without any boundary effect. Test results show that shields will cause reduction in drawing volume of coal in the LTCC mining. The deflection phenomenon of drawing body is also observed in the controlled test, which is verified that the deflection of drawing body is caused by shield. It is found that the deflection angle decreases with increasing caving height, with the maximum value of atailand the minimum value of 0. In addition, the formula to calculate the drawing volume is proposed subsequently.The deflection of drawing body is numerically simulated using particle flow code PFC3 Dand the proposed formula to calculate drawing volume in LTCC is also verified.
文摘This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金co-supported by the National Natural Science Foundation of China(Nos. 61273349 and 61573043)
文摘The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
文摘随着测绘地理信息、物联网、人工智能、第5代移动技术(5G)等新兴技术的发展,以三维手段对现实世界进行描述和管理已经成为可能。作为城市在区域范围内的缩影,园区的管理也应向精细化、智慧化方向发展。本文在大量三维地理信息系统(geographic information system,GIS)建设案例的基础上,对比目前主流的三维GIS平台的优劣势,选择适用于园区尺度的三维GIS平台,并开展三维智慧园区建设,实现智慧园区的三维规划、建设、运营全过程管理,推动园区管理体系和管理水平的现代化。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the punctur
基金funded by the Natural Science and Engineering Research Council (NSERC) of Canada (No. RGPIN-2014-04100)
文摘Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.
基金supported by the funding of the National Institute for Occupational Safety and Health under a contract with the Pennsylvania State University as part of the capacity building in ground supportthe funding from TüBITAK of Turkey has been used to support the sabbatical leave of Dr.Kahraman who made some contributions to this study
文摘Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface.Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.
基金N.C.would like to acknowledge the support the 2115 Talent Development Program of China Agricultural UniversityThis research used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and synthesized a Fe-N decorated graphene nanosheet(Fe-N5/GN SAC)with the coordination number of five.Through enzymology and theoretical calculations,the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure.We explored its potential on lung cancer therapy,and found that it could kill human lung adenocarcinoma cells(A549)by decomposing hydrogen peroxide(H_(2)O_(2))into toxic reactive oxygen species(ROS)under acidic microenvironment in threedimensional(3D)lung cancer cell model.Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 21571145 and 21633008), the Fundamental Research Funds for the Central Universities and Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.
文摘The development of efficient and stable non-noble metal-based electrocatalysts for the oxygen evolution reaction (OER) is one of the essential challenges for the upcoming hydrogen economy. Herein, three-dimensional (3D) mesoporous nickel iron selenide with rose-like microsphere architecture was directly grown on Ni foam via a successive two-step hydrotherrnal method. The unique 3D mesoporous rose-like morphology leads to a higher number of active sites as well as fast mass and electron transport through the entire electrode, and facilitates the release of 02 bubbles formed during the OER catalysis. As a result, the synthesized Ni0.76Fe0.24Se exhibits superior OER performances, with an ultralow overpotential of 197 mV needed to produce a current density of 10 mA.cm-2 in 1 M KOH, outperforming all transition metal selenide OER catalysts reported to date.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.41977240)the Fundamental Research Funds for the Central Universities(Grant No.B200202090).
文摘In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.