提出了一种分层块状全局搜索到临近点局部搜索的改进迭代最近点(ICP)算法,用于进一步提高ICP算法的配准速度并消除点云缺失对点云配准的影响。该配准方法在粗略配准之后,以点云块为分层单元对模型点集进行选取,并对选取的少量模型点进...提出了一种分层块状全局搜索到临近点局部搜索的改进迭代最近点(ICP)算法,用于进一步提高ICP算法的配准速度并消除点云缺失对点云配准的影响。该配准方法在粗略配准之后,以点云块为分层单元对模型点集进行选取,并对选取的少量模型点进行全局搜索获取其对应最近点;然后,以这些模型点对应的最近点作为搜索中心,在场景点集中进行局部搜索,获取这些模型点的大量临近点的对应最近点;最后,剔除错误对应最近点对,并求取坐标变换。与基于KD-Tree的ICP算法和基于LS+HS(Logarithmic Search Combined with Hierarchical Model Point Selection)的ICP算法相比,该配准算法对Happy bunny扫描数据的配准速度分别提高了78%和24%;对Dragon扫描数据的配准速度分别提高了73%和30%。这些结果表明该算法可以快速、精确地实现三维点云间的配准。展开更多
针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,SfM)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性...针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,SfM)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性状参数。采用前期研制的小车,在户外采集不同视角下的玉米植株图像(采集间距为5~6 cm),基于SfM算法获取玉米植株三维点云;运用直通滤波、圆柱拟合和条件欧氏聚类算法自动分割单株、茎秆和叶片等点云数据,基于距离最值遍历、三角面片化等算法实现株高、茎粗、叶面积等11个性状的准确、无损测量。结果表明,与人工测量值相比,测得的株高、茎粗和叶面积的平均绝对百分比误差分别为3.163%、4.760%和19.102%,均方根误差分别为3.557 cm、1.540 mm、48.163 cm2,决定系数分别为0.970、0.842、0.901。研究表明,本文方法适用于作物表型户外测量,为表型研究提供了一种新的作物表型户外测量方法,同时还证明,株高和单株最小包围盒体积可以显著区分低地上部生物量玉米植株和高地上部生物量玉米植株。展开更多
文摘提出了一种分层块状全局搜索到临近点局部搜索的改进迭代最近点(ICP)算法,用于进一步提高ICP算法的配准速度并消除点云缺失对点云配准的影响。该配准方法在粗略配准之后,以点云块为分层单元对模型点集进行选取,并对选取的少量模型点进行全局搜索获取其对应最近点;然后,以这些模型点对应的最近点作为搜索中心,在场景点集中进行局部搜索,获取这些模型点的大量临近点的对应最近点;最后,剔除错误对应最近点对,并求取坐标变换。与基于KD-Tree的ICP算法和基于LS+HS(Logarithmic Search Combined with Hierarchical Model Point Selection)的ICP算法相比,该配准算法对Happy bunny扫描数据的配准速度分别提高了78%和24%;对Dragon扫描数据的配准速度分别提高了73%和30%。这些结果表明该算法可以快速、精确地实现三维点云间的配准。