Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of infor...Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of information and communications technology to support communal sharing.Methods:By relying on prior literature,this paper proposes a conceptual framework with three dimensions:(1)human,(2)technology,and(3)organization,and explores a set of fundamental factors that make a city smart from a sharing economy perspective.Results:Using this triangle framework,we discuss what emerging blockchain technology may contribute to these factors and how its elements can help smart cities develop sharing services.Conclusions:This study discusses how blockchain-based sharing services can contribute to smart cities based on a conceptual framework.We hope it can stimulate interest in theory and practice to foster discussions in this area.展开更多
This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agr...This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.展开更多
Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agricult...Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agriculture.The advances and improvements in CEA have promoted the scientific solutions for the efficient production of plants in populated cities and multi-story buildings.Successful deployment of CEA for urban agriculture requires many components and subsystems,as well as the understanding of the external influencing factors that should be systematically considered and integrated.This review is an attempt to highlight some of the most recent advances in greenhouse technology and CEA in order to raise the awareness for technology transfer and adaptation,which is necessary for a successful transition to urban agriculture.This study reviewed several aspects of a high-tech CEA system including improvements in the frame and covering materials,environment perception and data sharing,and advanced microclimate control and energy optimization models.This research highlighted urban agriculture and its derivatives,including vertical farming,rooftop greenhouses and plant factories which are the extensions of CEA and have emerged as a response to the growing population,environmental degradation,and urbanization that are threatening food security.Finally,several opportunities and challenges have been identified in implementing the integrated CEA and vertical farming for urban agriculture.展开更多
High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are l...High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.展开更多
Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physi...Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.展开更多
The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nan...The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nanogenerator(TENG)is proposed for the sustainable environmental monitoring.The wind powered TENG(W-TENG)is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes.With the energy management module,the weak electrical energy from WTENG can be converted into a stable direct current(DC)2.5 V voltage for the operation of the IoT sensing node.When the storage energy exceeds 4.4 V,the node can be activated,then the microprogrammed control unit(MCU)transmits the monitoring data.Thereafter,the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT(NBIoT)module.At a wind speed of 8.4 m/s,the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s.This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT,big data,and environmental monitoring.展开更多
The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and d...The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and distributed general ledger agreement,the blockchain presents us with a great opportunity to establish data security and trust for automation and intelligence development in the Internet of Things(IoT)and it creates a new un-centralized programmable smart ecosystem.Our research synthesizes and analyses extant articles that focus on blockchain-related perspectives which will potentially play an important role in sustainable development in the world.Blockchain applications and future directions always attract more attention.Blockchain technology provides strong scalability and interoperability between the intelligent and the physical worlds.展开更多
Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT i...Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT is useful in many areas like environment,water monitoring,industry,public security,medicine,and so on.For covering all spaces and operating correctly,the IoT benefits from advantages of other recent technologies,like radio frequency identification,wireless sensor networks,big data,and mobile network.However,despite of the integration of various things in one network and the exchange of data among heterogeneous sources,the security of user’s data is a central question.For this reason,the authentication of interconnected objects is received as an interested importance.In 2012,Ye et al.suggested a new authentication and key exchanging protocol for Internet of things devices.However,we have proved that their protocol cannot resist to various attacks.In this paper,we propose an enhanced authentication protocol for IoT.Furthermore,we present the comparative results between our proposed scheme and other related ones.展开更多
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ...The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.展开更多
This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing short...This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing shortcomings and potential issues.First,we use the Java application CiteSpace to analyze co-citation networks in the literature related to the operational management of IoT-based intelligent agriculture.From the literature analysis results,we identify three major fields:(1)the development of agricultural IoT(Agri-IoT)technology,(2)the precision management of agricultural production,and(3)the traceability management of agricultural products.Second,we review research in the three fields separately in detail.Third,on the basis of the research gaps identified in the review and from the perspective of integrating and upgrading the entire agricultural industry chain,additional research directions are recommended from the following aspects:The operational management of agricultural production,product processing,and product sale and after-sale service based on Agri-IoT.The theoretical research and practical application of combining operational management theories and IoT-based intelligent agriculture will provide informed decision support for stakeholders and drive the further development of the entire agriculture industry chain.展开更多
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the...Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.展开更多
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential...The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.As IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT serves.In this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS attacks.The CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)methods.The proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in real-time.This involvesemploying the best-performing ML algorithmf展开更多
With the rapid development of mobile communication technology and intelligent applications,the quantity of mobile devices and data traffic in networks have been growing exponentially,which poses a great burden to netw...With the rapid development of mobile communication technology and intelligent applications,the quantity of mobile devices and data traffic in networks have been growing exponentially,which poses a great burden to networks and brings huge challenge to servicing user demand.Edge caching,which utilizes the storage and computation resources of the edge to bring resources closer to end users,is a promising way to relieve network burden and enhance user experience.In this paper,we aim to survey the edge caching techniques from a comprehensive and systematic perspective.We first present an overview of edge caching,summarizing the three key issues regarding edge caching,i.e.,where,what,and how to cache,and then introducing several significant caching metrics.We then carry out a detailed and in-depth elaboration on these three issues,which correspond to caching locations,caching objects,and caching strategies,respectively.In particular,we innovate on the issue“what to cache”,interpreting it as the classification of the“caching objects”,which can be further classified into content cache,data cache,and service cache.Finally,we discuss several open issues and challenges of edge caching to inspire future investigations in this research area.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care syst...Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care systems,wearables,connected vehicles,and industries.This has given rise to risks associated with the privacy and security of systems.Security issues and cyber attacks on IoT devices may potentially hinder the growth of IoT products due to deficiencies in the architecture.To counter these issues,we need to implement privacy and security right from the building blocks of IoT.The IoT architecture has evolved over the years,improving the stack of architecture with new solutions such as scalability,management,interoperability,and extensibility.This emphasizes the need to standardize and organize the IoT reference architecture in federation with privacy and security concerns.In this study,we examine and analyze 12 existing IoT reference architectures to identify their shortcomings on the basis of the requirements addressed in the standards.We propose an architecture,the privacy-federated IoT security reference architecture(PF-IoT-SRA),which interprets all the involved privacy metrics and counters major threats and attacks in the IoT communication environment.It is a step toward the standardization of the domain architecture.We effectively validate our proposed reference architecture using the architecture trade-off analysis method(ATAM),an industry-recognized scenario-based approach.展开更多
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d...The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.展开更多
Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for no...Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for novel distributed optimal control approaches.However,wireless communication networks are critical to fulfill these tasks with the performance influenced by inherent uncertainties in networks,e.g.,unpredictable occurrence of link failures.Centralized and hierarchical distributed approaches are vulnerable against link failure,while the robustness of fully distributed approaches depends on the algorithms adopted.This study therefore proposes a fully distributed robust optimal control approach for air-conditioning systems considering uncertainties of com-munication link in IoT-enabled BASs.The distributed algorithm is adopted that agents know their out-neighbors only.Agents directly coordinate with the connected neighbors for global optimization.Tests are conducted to test and validate the proposed approach by comparing with existing approaches,i.e.,the centralized,the hierarchical distributed and the fully distributed approaches.Results show that different approaches are vulnerable against to uncertainties of communication link to different extents.The proposed approach always guarantees the optimal control performance under normal conditions and conditions with link failures,verifying its high robustness.It also has low computation complexity and high optimization efficiency,thus applicable on IoT-enabled BASs.展开更多
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT 展开更多
Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects rang...Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.展开更多
Internet of Things(IoT)based sensor network is largely utilized in various field for transmitting huge amount of data due to their ease and cheaper installation.While performing this entire process,there is a high pos...Internet of Things(IoT)based sensor network is largely utilized in various field for transmitting huge amount of data due to their ease and cheaper installation.While performing this entire process,there is a high possibility for data corruption in the mid of transmission.On the other hand,the network performance is also affected due to various attacks.To address these issues,an efficient algorithm that jointly offers improved data storage and reliable routing is proposed.Initially,after the deployment of sensor nodes,the election of the storage node is achieved based on a fuzzy expert system.Improved Random Linear Network Coding(IRLNC)is used to create an encoded packet.This encoded packet from the source and neighboring nodes is transmitted to the storage node.Finally,to transmit the encoded packet from the storage node to the destination shortest path is found using the Destination Sequenced Distance Vector(DSDV)algorithm.Experimental analysis of the proposed work is carried out by evaluating some of the statistical metrics.Average residual energy,packet delivery ratio,compression ratio and storage time achieved for the proposed work are 8.8%,0.92%,0.82%,and 69 s.Based on this analysis,it is revealed that better data storage system and system reliability is attained using this proposed work.展开更多
基金the Research Project 12DDB012 from Jiangsu Social Science Research Foundationgrants from National Natural Science Foundation of China(No.71671174,71472172)the Central Universities of China(No.WK2040160013).
文摘Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of information and communications technology to support communal sharing.Methods:By relying on prior literature,this paper proposes a conceptual framework with three dimensions:(1)human,(2)technology,and(3)organization,and explores a set of fundamental factors that make a city smart from a sharing economy perspective.Results:Using this triangle framework,we discuss what emerging blockchain technology may contribute to these factors and how its elements can help smart cities develop sharing services.Conclusions:This study discusses how blockchain-based sharing services can contribute to smart cities based on a conceptual framework.We hope it can stimulate interest in theory and practice to foster discussions in this area.
基金supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University(77H0603)in part by the National Natural Science Foundation of China(62072248)。
文摘This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.
文摘Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agriculture.The advances and improvements in CEA have promoted the scientific solutions for the efficient production of plants in populated cities and multi-story buildings.Successful deployment of CEA for urban agriculture requires many components and subsystems,as well as the understanding of the external influencing factors that should be systematically considered and integrated.This review is an attempt to highlight some of the most recent advances in greenhouse technology and CEA in order to raise the awareness for technology transfer and adaptation,which is necessary for a successful transition to urban agriculture.This study reviewed several aspects of a high-tech CEA system including improvements in the frame and covering materials,environment perception and data sharing,and advanced microclimate control and energy optimization models.This research highlighted urban agriculture and its derivatives,including vertical farming,rooftop greenhouses and plant factories which are the extensions of CEA and have emerged as a response to the growing population,environmental degradation,and urbanization that are threatening food security.Finally,several opportunities and challenges have been identified in implementing the integrated CEA and vertical farming for urban agriculture.
文摘High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.
基金This research has been supported by the National Science Foundation(under grant#1723596)the National Security Agency(under grant#H98230-17-1-0355).
文摘Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.
基金supported by the National Key Research&Development Project from Minister of Science and Technology(No.2021YFA1201604)the National Natural Science Foundation of China(Nos.52250112 and 51922023)Fundamental Research Funds for the Central Universities(No.E1EG6804).
文摘The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nanogenerator(TENG)is proposed for the sustainable environmental monitoring.The wind powered TENG(W-TENG)is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes.With the energy management module,the weak electrical energy from WTENG can be converted into a stable direct current(DC)2.5 V voltage for the operation of the IoT sensing node.When the storage energy exceeds 4.4 V,the node can be activated,then the microprogrammed control unit(MCU)transmits the monitoring data.Thereafter,the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT(NBIoT)module.At a wind speed of 8.4 m/s,the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s.This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT,big data,and environmental monitoring.
文摘The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and distributed general ledger agreement,the blockchain presents us with a great opportunity to establish data security and trust for automation and intelligence development in the Internet of Things(IoT)and it creates a new un-centralized programmable smart ecosystem.Our research synthesizes and analyses extant articles that focus on blockchain-related perspectives which will potentially play an important role in sustainable development in the world.Blockchain applications and future directions always attract more attention.Blockchain technology provides strong scalability and interoperability between the intelligent and the physical worlds.
文摘Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT is useful in many areas like environment,water monitoring,industry,public security,medicine,and so on.For covering all spaces and operating correctly,the IoT benefits from advantages of other recent technologies,like radio frequency identification,wireless sensor networks,big data,and mobile network.However,despite of the integration of various things in one network and the exchange of data among heterogeneous sources,the security of user’s data is a central question.For this reason,the authentication of interconnected objects is received as an interested importance.In 2012,Ye et al.suggested a new authentication and key exchanging protocol for Internet of things devices.However,we have proved that their protocol cannot resist to various attacks.In this paper,we propose an enhanced authentication protocol for IoT.Furthermore,we present the comparative results between our proposed scheme and other related ones.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61872289 and 62172266in part by the Henan Key Laboratory of Network Cryptography Technology LNCT2020-A07the Guangxi Key Laboratory of Trusted Software under Grant No.KX202308.
文摘The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.
基金This work was supported by grants from the Natural Science Foundation of China Key Project(Grant No.71531002)Innovative Group Project(Grant No.71421001)General Project(Grant No.71571027).
文摘This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing shortcomings and potential issues.First,we use the Java application CiteSpace to analyze co-citation networks in the literature related to the operational management of IoT-based intelligent agriculture.From the literature analysis results,we identify three major fields:(1)the development of agricultural IoT(Agri-IoT)technology,(2)the precision management of agricultural production,and(3)the traceability management of agricultural products.Second,we review research in the three fields separately in detail.Third,on the basis of the research gaps identified in the review and from the perspective of integrating and upgrading the entire agricultural industry chain,additional research directions are recommended from the following aspects:The operational management of agricultural production,product processing,and product sale and after-sale service based on Agri-IoT.The theoretical research and practical application of combining operational management theories and IoT-based intelligent agriculture will provide informed decision support for stakeholders and drive the further development of the entire agriculture industry chain.
基金supported in part by the National Natural Science Foundation of China (62072248, 62072247)the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)。
文摘Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.
文摘The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.As IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT serves.In this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS attacks.The CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)methods.The proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in real-time.This involvesemploying the best-performing ML algorithmf
基金supported by the National Natural Science Foundation of China(No.92267104)the Natural Science Foundation of Jiangsu Province of China(No.BK20211284)Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps(No.2020DB005).
文摘With the rapid development of mobile communication technology and intelligent applications,the quantity of mobile devices and data traffic in networks have been growing exponentially,which poses a great burden to networks and brings huge challenge to servicing user demand.Edge caching,which utilizes the storage and computation resources of the edge to bring resources closer to end users,is a promising way to relieve network burden and enhance user experience.In this paper,we aim to survey the edge caching techniques from a comprehensive and systematic perspective.We first present an overview of edge caching,summarizing the three key issues regarding edge caching,i.e.,where,what,and how to cache,and then introducing several significant caching metrics.We then carry out a detailed and in-depth elaboration on these three issues,which correspond to caching locations,caching objects,and caching strategies,respectively.In particular,we innovate on the issue“what to cache”,interpreting it as the classification of the“caching objects”,which can be further classified into content cache,data cache,and service cache.Finally,we discuss several open issues and challenges of edge caching to inspire future investigations in this research area.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
文摘Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care systems,wearables,connected vehicles,and industries.This has given rise to risks associated with the privacy and security of systems.Security issues and cyber attacks on IoT devices may potentially hinder the growth of IoT products due to deficiencies in the architecture.To counter these issues,we need to implement privacy and security right from the building blocks of IoT.The IoT architecture has evolved over the years,improving the stack of architecture with new solutions such as scalability,management,interoperability,and extensibility.This emphasizes the need to standardize and organize the IoT reference architecture in federation with privacy and security concerns.In this study,we examine and analyze 12 existing IoT reference architectures to identify their shortcomings on the basis of the requirements addressed in the standards.We propose an architecture,the privacy-federated IoT security reference architecture(PF-IoT-SRA),which interprets all the involved privacy metrics and counters major threats and attacks in the IoT communication environment.It is a step toward the standardization of the domain architecture.We effectively validate our proposed reference architecture using the architecture trade-off analysis method(ATAM),an industry-recognized scenario-based approach.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R333)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.
基金supported by a collaborative research fund(C5018-20G)of the Research Grant Council(RGC)of the Hong Kong SAR and a project of strategic importance of The Hong Kong Poly-technic University.
文摘Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for novel distributed optimal control approaches.However,wireless communication networks are critical to fulfill these tasks with the performance influenced by inherent uncertainties in networks,e.g.,unpredictable occurrence of link failures.Centralized and hierarchical distributed approaches are vulnerable against link failure,while the robustness of fully distributed approaches depends on the algorithms adopted.This study therefore proposes a fully distributed robust optimal control approach for air-conditioning systems considering uncertainties of com-munication link in IoT-enabled BASs.The distributed algorithm is adopted that agents know their out-neighbors only.Agents directly coordinate with the connected neighbors for global optimization.Tests are conducted to test and validate the proposed approach by comparing with existing approaches,i.e.,the centralized,the hierarchical distributed and the fully distributed approaches.Results show that different approaches are vulnerable against to uncertainties of communication link to different extents.The proposed approach always guarantees the optimal control performance under normal conditions and conditions with link failures,verifying its high robustness.It also has low computation complexity and high optimization efficiency,thus applicable on IoT-enabled BASs.
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT
基金supported in part by the National Natural Science Foundation of China under Grant 62171120 and 62001106National Key Research and Development Program of China(2020YFE0200600)+2 种基金Jiangsu Provincial Key Laboratory of Network and Information Security No.BM2003201Guangdong Key Research and Development Program under Grant2020B0303010001Purple Mountain Laboratories for Network and Communication Security
文摘Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.
文摘Internet of Things(IoT)based sensor network is largely utilized in various field for transmitting huge amount of data due to their ease and cheaper installation.While performing this entire process,there is a high possibility for data corruption in the mid of transmission.On the other hand,the network performance is also affected due to various attacks.To address these issues,an efficient algorithm that jointly offers improved data storage and reliable routing is proposed.Initially,after the deployment of sensor nodes,the election of the storage node is achieved based on a fuzzy expert system.Improved Random Linear Network Coding(IRLNC)is used to create an encoded packet.This encoded packet from the source and neighboring nodes is transmitted to the storage node.Finally,to transmit the encoded packet from the storage node to the destination shortest path is found using the Destination Sequenced Distance Vector(DSDV)algorithm.Experimental analysis of the proposed work is carried out by evaluating some of the statistical metrics.Average residual energy,packet delivery ratio,compression ratio and storage time achieved for the proposed work are 8.8%,0.92%,0.82%,and 69 s.Based on this analysis,it is revealed that better data storage system and system reliability is attained using this proposed work.