Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of ther...Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of thermo-mechanical principles.Based on the incremental dissipation function,a new deviatoric shift stress is derived and then introduced into the existing constitutive models to describe the yield behavior in the deviatoric plane for geomaterials.By adopting the proposed shift stress,the relationship between dissipative stress tensors and true stress tensors can be established.Therefore,the threedimensional plastic strain can be calculated reasonably through the associated flow rule in the three-dimensional dissipative stress space.At the same time,three methods that are conventionally adopted for generalizing constitutive models to model the three-dimensional stress-strain relationships are examined under the thermo-mechanical framework.The TS(transformed stress)method is shown to obey the thermo-mechanical rules and the TS space adopted in TS method is actually a translational three-dimensional dissipative stress space.However,it is illustrated that the other two approaches,the method of using failure criterion directly and the method of using g()function,violate the basic rules of thermo-mechanical theories although they may bring convenience and simplicity to numerical analysis for geotechnical engineering.Comparison between model predictions and experimental data confirms the validity of the proposed three-dimensional dissipative stress space.展开更多
Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantage...Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantages to mining and drilling operations for mineral and energy resources.Nevertheless,before these benefits can be realized,a better understanding of these processes is required to improve their deployment in the field.In this paper,we employ a recently developed model of the grain-scale processes involved in electropulse stimulation to examine excavation of hard rock under realistic operating conditions.To that end,we investigate the maximum applied voltage within ranges of 120e600 kV,to observe the onset of rock fragmentation.We further study the effect of grain size on rock breakage,by comparing fine(granodiorite)and coarse grained(granite)rocks.Lastly,the pore fluid salinity is investigated,since the electric conductivity of the pore fluid is shown to be a governing factor for the electrical conductivity of the modeled system.This study demonstrates that all investigated factors are crucial to the efficiency of rock fragmentation by electropulsing.展开更多
A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered...A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered by employing a GSD index and relative density dependence was reflected by varying the plastic-breakage coupling angle.Simulations of the experimental results including isotropic compression and one-dimensional compression of sands with different relative densities and GSDs revealed that sand compressibility increased with the increasing GSD index and plastic-breakage coupling angle.The coupling angle decreased with increasing relative density,indicating that grains would break more in sand with comparatively high relative density.展开更多
Heat Treating is a critical manufacturing technology. This is particularly true in countries with large manufacturing industry including:; automotive, construction, transportation, and aerospace sectors. Technical adv...Heat Treating is a critical manufacturing technology. This is particularly true in countries with large manufacturing industry including:; automotive, construction, transportation, and aerospace sectors. Technical advancement of the heat treating industry will be a critical component of the increasing need to remain competitive in this manufacturing sector on a global scale. ASM International has identified the development of process modeling and numerical simulation as a critical technology for the advancement of the heat treating process industry. In this paper, a selective overview of the current accomplishments and future needs of process modeling technologies in heat treatment will be provided.展开更多
Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate ...Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.展开更多
It is a novel idea to make steamed bread by adding potato flour into wheat flour considering the production and nutritional factors of potato. In this study, the influence of potato flour(0–35%) on dough rheology a...It is a novel idea to make steamed bread by adding potato flour into wheat flour considering the production and nutritional factors of potato. In this study, the influence of potato flour(0–35%) on dough rheology and quality of steamed bread were investigated. Potato flour addition significantly influenced the dough rheological properties and steamed bread quality, such as increased water absorption, the maximum gaseous release height, total volume of CO_2 and hardness, while decreased dough stability and specific volume of steamed bread. Moreover, correlation analysis suggested that dough height at the maximum development time, dough stability, water absorption and the phase tangent can be used for predicting the technological quality of steamed bread. Potato-wheat steamed bread had higher dietary fibre, ash content and antioxidant activity than those of wheat steamed bread. The estimated glycemic index decreased from 73.63(0%) to 60.01(35%). Considering the sensory evaluation, the steamed bread with 20% potato flour is acceptable. In conclusion, adding appropriate quantity of potato flour to wheat flour for steamed bread production will not only maintain the technological quality, but also can improve the nutritional value of the steamed bread.展开更多
High strength low alloy(HSLA) steels have been widely used in pipelines,power plant components,civil structures and so on,due to their outstanding mechanical properties as high strength and toughness,and excellent w...High strength low alloy(HSLA) steels have been widely used in pipelines,power plant components,civil structures and so on,due to their outstanding mechanical properties as high strength and toughness,and excellent weldability.Multi-phase microstructures containing acicular ferrite or acicular ferrite dominated phase have been proved to possess good comprehensive properties in HSLA steels.This paper mainly focuses on the formation mechanisms and control methods of acicular ferrite in HSLA steels.Effect of austenitizing conditions,continuous cooling rate,and isothermal quenching time and temperature on acicular ferrite transformation was reviewed.Furthermore,the modified process to control the formation of multi-phase microstructures containing acicular ferrite,as intercritical heat treatments,step quenching treatments and thermo-mechanical controlled processing,was summarized.The favorable combination of mechanical properties can be achieved by these modified treatments.展开更多
2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al...2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al) matrix of 2A97 alloy processed by the heat treatment with no pre-stretch deformation. When the pre-stretch deformation is 3% and 6%, respectively, amounts of tiny T1 and a few of S' precipitates precipitates are observed in the microstructures of 2A97 alloy. The tensile test results show that the tensile properties of 2A97 alloys are improved via thermo-mechanical treatment. When the pre-stretch deformation is from 0, 3% to 6%, the ultimate tensile strength values of the 2A97 alloys increase gradually from 447.7, 516.5 to 534.3 MPa, and the elongations decrease from 17.6%, 12.8% to 10.2%, respectively. Moreover, with increasing pre-stretch deformation amount from 0 to 6%, the in-plane anisotropy value of 2A97 alloys becomes more obvious.展开更多
The diversity of microstructure and properties of 830 MPa grade pipeline steel containing chromium was investigated by optical microscope and transmission electron microscopy. The main microstructures were multiple co...The diversity of microstructure and properties of 830 MPa grade pipeline steel containing chromium was investigated by optical microscope and transmission electron microscopy. The main microstructures were multiple configurations, containing lath bainite and granule bainitc. Mechanical properties test results showed that the yield strength and tensile strength improved with increasing chromium content. The toughness and elongation decreased at the same time, so temper process was introduced. Appling proper temper parameters, the values of toughness and elongation were improved dramatically, and the strength decreased slightly.展开更多
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen...The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.展开更多
The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron m...The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.展开更多
基金supported by the National Natural Science Foundation of China (Grants Nos. 11072016,51179003,11272031,51209002)
文摘Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of thermo-mechanical principles.Based on the incremental dissipation function,a new deviatoric shift stress is derived and then introduced into the existing constitutive models to describe the yield behavior in the deviatoric plane for geomaterials.By adopting the proposed shift stress,the relationship between dissipative stress tensors and true stress tensors can be established.Therefore,the threedimensional plastic strain can be calculated reasonably through the associated flow rule in the three-dimensional dissipative stress space.At the same time,three methods that are conventionally adopted for generalizing constitutive models to model the three-dimensional stress-strain relationships are examined under the thermo-mechanical framework.The TS(transformed stress)method is shown to obey the thermo-mechanical rules and the TS space adopted in TS method is actually a translational three-dimensional dissipative stress space.However,it is illustrated that the other two approaches,the method of using failure criterion directly and the method of using g()function,violate the basic rules of thermo-mechanical theories although they may bring convenience and simplicity to numerical analysis for geotechnical engineering.Comparison between model predictions and experimental data confirms the validity of the proposed three-dimensional dissipative stress space.
基金supported by Innosuisse-Swiss Innovation Agency-under grant number 28305.1 PFIW-IWsupport from SwissGeoPower。
文摘Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantages to mining and drilling operations for mineral and energy resources.Nevertheless,before these benefits can be realized,a better understanding of these processes is required to improve their deployment in the field.In this paper,we employ a recently developed model of the grain-scale processes involved in electropulse stimulation to examine excavation of hard rock under realistic operating conditions.To that end,we investigate the maximum applied voltage within ranges of 120e600 kV,to observe the onset of rock fragmentation.We further study the effect of grain size on rock breakage,by comparing fine(granodiorite)and coarse grained(granite)rocks.Lastly,the pore fluid salinity is investigated,since the electric conductivity of the pore fluid is shown to be a governing factor for the electrical conductivity of the modeled system.This study demonstrates that all investigated factors are crucial to the efficiency of rock fragmentation by electropulsing.
基金supported by China Scholarship Council(Grant No.201306710022)
文摘A framework of continuum breakage mechanics was used to investigate the dependence of compressibility on grain size distribution(GSD)as well as relative density of sand.Compressibility dependence on GSD was considered by employing a GSD index and relative density dependence was reflected by varying the plastic-breakage coupling angle.Simulations of the experimental results including isotropic compression and one-dimensional compression of sands with different relative densities and GSDs revealed that sand compressibility increased with the increasing GSD index and plastic-breakage coupling angle.The coupling angle decreased with increasing relative density,indicating that grains would break more in sand with comparatively high relative density.
文摘Heat Treating is a critical manufacturing technology. This is particularly true in countries with large manufacturing industry including:; automotive, construction, transportation, and aerospace sectors. Technical advancement of the heat treating industry will be a critical component of the increasing need to remain competitive in this manufacturing sector on a global scale. ASM International has identified the development of process modeling and numerical simulation as a critical technology for the advancement of the heat treating process industry. In this paper, a selective overview of the current accomplishments and future needs of process modeling technologies in heat treatment will be provided.
文摘Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.
基金financed by the Public Welfare Industry(Agriculture)Research Project of China(201503001-2)the Agricultural Special Financial in 2015 of Chinathe Basic Research Expenses Budget Incremental Project of Chinese Academy of Agricultural Sciences(2014ZL009)
文摘It is a novel idea to make steamed bread by adding potato flour into wheat flour considering the production and nutritional factors of potato. In this study, the influence of potato flour(0–35%) on dough rheology and quality of steamed bread were investigated. Potato flour addition significantly influenced the dough rheological properties and steamed bread quality, such as increased water absorption, the maximum gaseous release height, total volume of CO_2 and hardness, while decreased dough stability and specific volume of steamed bread. Moreover, correlation analysis suggested that dough height at the maximum development time, dough stability, water absorption and the phase tangent can be used for predicting the technological quality of steamed bread. Potato-wheat steamed bread had higher dietary fibre, ash content and antioxidant activity than those of wheat steamed bread. The estimated glycemic index decreased from 73.63(0%) to 60.01(35%). Considering the sensory evaluation, the steamed bread with 20% potato flour is acceptable. In conclusion, adding appropriate quantity of potato flour to wheat flour for steamed bread production will not only maintain the technological quality, but also can improve the nutritional value of the steamed bread.
基金the China National Funds for Distinguished Young Scientists (Grant No.51325401)the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB119001)the National Natural Science Foundation of China (Grant Nos.51501126,51474156 and U1660201) for grant and financial support
文摘High strength low alloy(HSLA) steels have been widely used in pipelines,power plant components,civil structures and so on,due to their outstanding mechanical properties as high strength and toughness,and excellent weldability.Multi-phase microstructures containing acicular ferrite or acicular ferrite dominated phase have been proved to possess good comprehensive properties in HSLA steels.This paper mainly focuses on the formation mechanisms and control methods of acicular ferrite in HSLA steels.Effect of austenitizing conditions,continuous cooling rate,and isothermal quenching time and temperature on acicular ferrite transformation was reviewed.Furthermore,the modified process to control the formation of multi-phase microstructures containing acicular ferrite,as intercritical heat treatments,step quenching treatments and thermo-mechanical controlled processing,was summarized.The favorable combination of mechanical properties can be achieved by these modified treatments.
文摘2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al) matrix of 2A97 alloy processed by the heat treatment with no pre-stretch deformation. When the pre-stretch deformation is 3% and 6%, respectively, amounts of tiny T1 and a few of S' precipitates precipitates are observed in the microstructures of 2A97 alloy. The tensile test results show that the tensile properties of 2A97 alloys are improved via thermo-mechanical treatment. When the pre-stretch deformation is from 0, 3% to 6%, the ultimate tensile strength values of the 2A97 alloys increase gradually from 447.7, 516.5 to 534.3 MPa, and the elongations decrease from 17.6%, 12.8% to 10.2%, respectively. Moreover, with increasing pre-stretch deformation amount from 0 to 6%, the in-plane anisotropy value of 2A97 alloys becomes more obvious.
文摘The diversity of microstructure and properties of 830 MPa grade pipeline steel containing chromium was investigated by optical microscope and transmission electron microscopy. The main microstructures were multiple configurations, containing lath bainite and granule bainitc. Mechanical properties test results showed that the yield strength and tensile strength improved with increasing chromium content. The toughness and elongation decreased at the same time, so temper process was introduced. Appling proper temper parameters, the values of toughness and elongation were improved dramatically, and the strength decreased slightly.
基金supported by the Hebei Provincial Natural Science Foundation of China(No.E2007000591).
文摘The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.
基金Project(2008WK2005) supported by the Science and Technology Plan of Hunan Province, China
文摘The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.