High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hy...High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hydrogen permeation, thermal desorption spectroscopy (TDS), slow strain rate test (SSRT) and microstructure observation. The hydrogen concentration of both 10.9 grade (Rm=950-1 150 MPa) and 12.9 grade (Rm=1 150-1 250 MPa) bolt steels increases with increasing the hydrogen charging current densities and charging time. The 12.9 grade bolt steel has higher apparent diffusion coefficient than 10.9 grade steel, corresponding to the value of 4.7×10 7 mm^2/s. By means of TDS tests, the activation energies of the two experimental steels are 17.74 kJ/mol and 18.92 kJ/mol, respectively. The hydrogen traps of both grade bolt steels are dislocations and crystal lattice. The notch tensile strength of the steels is reduced with the hydrogen concentration carried out by SSRT. The fracture morphologies of the steels after hydrogen charging present ductile dimple and quasi-cleavage characteristic.展开更多
Vanadium alloy is proposed as an attractive candidate for first wall and blanket structural material of fusion reactors. The retention and release behaviors of hydrogen and helium in vanadium alloy may be an important...Vanadium alloy is proposed as an attractive candidate for first wall and blanket structural material of fusion reactors. The retention and release behaviors of hydrogen and helium in vanadium alloy may be an important issue. In the present work, 1.7 keV deuterium and 5 keV helium ions are respectively implanted into V-4Cr-4Ti and V-4Ti at room temperature. The retention and release of deuterium and helium are measured with thermal desorption spectroscopy (TDS). When the helium ion fluence is larger than 3 × 1017 He/cm2, the retained helium saturates with a value of approximately 2.5 ×1017 He/cm2. However, when the ion fluence is 1×1019 D/cm2, the hydrogen saturation in vanadium alloy does not take place. Experimental results indicates that hydrogen and helium retention in vanadium alloy may lead to serious problems and special attention should be paid when it is applied to fusion reactors.展开更多
Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal deso...Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal desorption spectroscopy(TDS)results demonstrate that adsorption of molecular hy- drogen on Pt(111)forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species.Bulk Had species is more thermal-unstable than surface Had species on Pt(111),suggesting that bulk Had species is more energetic.This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.展开更多
基金supported by the National Key Research and Development Program of(No.2021YFA1500601 and No.2018YFA0208703)the National Natural Science Foundation of China(No.21973010 and No.21973092)+3 种基金the Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201504)the CAS Projects for Young Scientists in Basic Research(No.YSBR-007)the Dalian Institute of Chemical Physics Innovation Foundation(DICP I202205)LiaoNing Revitalization Talents Program(No.XLYC1907032).
基金the funding of this work by Luoyang Sunrui Special Equipment Co.,Ltd.in Luoyang(China)
文摘High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hydrogen permeation, thermal desorption spectroscopy (TDS), slow strain rate test (SSRT) and microstructure observation. The hydrogen concentration of both 10.9 grade (Rm=950-1 150 MPa) and 12.9 grade (Rm=1 150-1 250 MPa) bolt steels increases with increasing the hydrogen charging current densities and charging time. The 12.9 grade bolt steel has higher apparent diffusion coefficient than 10.9 grade steel, corresponding to the value of 4.7×10 7 mm^2/s. By means of TDS tests, the activation energies of the two experimental steels are 17.74 kJ/mol and 18.92 kJ/mol, respectively. The hydrogen traps of both grade bolt steels are dislocations and crystal lattice. The notch tensile strength of the steels is reduced with the hydrogen concentration carried out by SSRT. The fracture morphologies of the steels after hydrogen charging present ductile dimple and quasi-cleavage characteristic.
基金The project supported by China-Japan Core University Program (Taskl-2A)
文摘Vanadium alloy is proposed as an attractive candidate for first wall and blanket structural material of fusion reactors. The retention and release behaviors of hydrogen and helium in vanadium alloy may be an important issue. In the present work, 1.7 keV deuterium and 5 keV helium ions are respectively implanted into V-4Cr-4Ti and V-4Ti at room temperature. The retention and release of deuterium and helium are measured with thermal desorption spectroscopy (TDS). When the helium ion fluence is larger than 3 × 1017 He/cm2, the retained helium saturates with a value of approximately 2.5 ×1017 He/cm2. However, when the ion fluence is 1×1019 D/cm2, the hydrogen saturation in vanadium alloy does not take place. Experimental results indicates that hydrogen and helium retention in vanadium alloy may lead to serious problems and special attention should be paid when it is applied to fusion reactors.
基金the National Natural Science Foundation of China(Grant No.20503027)Talent Program of Chinese Academy of SciencesChina Postdoc-toral Science Foundation(Grant No.2005038479)
文摘Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal desorption spectroscopy(TDS)results demonstrate that adsorption of molecular hy- drogen on Pt(111)forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species.Bulk Had species is more thermal-unstable than surface Had species on Pt(111),suggesting that bulk Had species is more energetic.This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.