能量桩技术具有支撑上部结构和浅层地热能换热器双重作用;作为一种节能减排新技术,近年来获得了一定的发展。依托微型钢管桩加固既有基础托换工程,开展冬季工况多次温度循环下微型钢管桩群桩的热力响应现场试验;实测不同间歇时长情况下...能量桩技术具有支撑上部结构和浅层地热能换热器双重作用;作为一种节能减排新技术,近年来获得了一定的发展。依托微型钢管桩加固既有基础托换工程,开展冬季工况多次温度循环下微型钢管桩群桩的热力响应现场试验;实测不同间歇时长情况下桩身温度与应力等变化规律,探讨不同运行模式下的桩基换热性能系数(COP,coefficient of performance)。试验结果表明:文中试验条件下,桩身附加温度应力随循环次数增加而增大,且随间歇时间的延长而减小;桩基COP随循环次数增加而减小,且随间歇时间的延长而增大;附加拉应力未超过设计控制范围、不会导致桩体破坏。展开更多
AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocell...AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines.Ten mice underwent HIFU ablation,and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation.Sixty normal mice were randomly divided into HIFU vaccine,tumor vaccine and control groups.These mice were immunized with HIFU-generated vaccine,tumor-generated vaccine,and saline,respectively.In addition,20 mice bearing H22 tumors were successfully treated with HIFU ablation. The protective immunity of the vaccinated mice was investigated before and after a subsequent H22 tumor challenge.Using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay,the cytotoxicity of splenic lymphocytes co-cultured with H22 cells wasdetermined in vitro before the tumor challenge,and tumor volume and survival were measured in vivo after the challenge in each group.The mechanism was also explored by loading the vaccines with bone marrowderived dendritic cells(DCs). RESULTS:Compared to the control,HIFU therapy, tumor-generated and HIFU-generated vaccines significantly increased cytolytic activity against H22 cells in the splenocytes of the vaccinated mice(P<0.001). The tumor volume was significantly smaller in the HIFU vaccine group than in the tumor vaccine group(P <0.05)and control group(P<0.01).However,there was no tumor growth after H22 rechallenge in the HIFU therapy group.Forty-eight-day survival rate was 100%in mice in the HIFU therapy group,30%in both the HIFU vaccine and tumor vaccine groups,and 20% in the control group,indicating that the HIFU-treated mice displayed significantly longer survival than the vaccinated mice in the remaining three groups(P< 0.001).After bone marrow-derived DCs were incubated with HIFU-generated and tumor-generated vaccines, the number of mature DCs expressing MHC-Ⅱ + ,CD80 + and CD86 + mo展开更多
文摘能量桩技术具有支撑上部结构和浅层地热能换热器双重作用;作为一种节能减排新技术,近年来获得了一定的发展。依托微型钢管桩加固既有基础托换工程,开展冬季工况多次温度循环下微型钢管桩群桩的热力响应现场试验;实测不同间歇时长情况下桩身温度与应力等变化规律,探讨不同运行模式下的桩基换热性能系数(COP,coefficient of performance)。试验结果表明:文中试验条件下,桩身附加温度应力随循环次数增加而增大,且随间歇时间的延长而减小;桩基COP随循环次数增加而减小,且随间歇时间的延长而增大;附加拉应力未超过设计控制范围、不会导致桩体破坏。
基金Supported by The Foundation of Ministry of Education of China,No.IRT0454
文摘AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines.Ten mice underwent HIFU ablation,and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation.Sixty normal mice were randomly divided into HIFU vaccine,tumor vaccine and control groups.These mice were immunized with HIFU-generated vaccine,tumor-generated vaccine,and saline,respectively.In addition,20 mice bearing H22 tumors were successfully treated with HIFU ablation. The protective immunity of the vaccinated mice was investigated before and after a subsequent H22 tumor challenge.Using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay,the cytotoxicity of splenic lymphocytes co-cultured with H22 cells wasdetermined in vitro before the tumor challenge,and tumor volume and survival were measured in vivo after the challenge in each group.The mechanism was also explored by loading the vaccines with bone marrowderived dendritic cells(DCs). RESULTS:Compared to the control,HIFU therapy, tumor-generated and HIFU-generated vaccines significantly increased cytolytic activity against H22 cells in the splenocytes of the vaccinated mice(P<0.001). The tumor volume was significantly smaller in the HIFU vaccine group than in the tumor vaccine group(P <0.05)and control group(P<0.01).However,there was no tumor growth after H22 rechallenge in the HIFU therapy group.Forty-eight-day survival rate was 100%in mice in the HIFU therapy group,30%in both the HIFU vaccine and tumor vaccine groups,and 20% in the control group,indicating that the HIFU-treated mice displayed significantly longer survival than the vaccinated mice in the remaining three groups(P< 0.001).After bone marrow-derived DCs were incubated with HIFU-generated and tumor-generated vaccines, the number of mature DCs expressing MHC-Ⅱ + ,CD80 + and CD86 + mo