Triboelectric nanogenerator(TENG) is an emerging powerful technology for converting ambient mechanical energy into electrical energy through the effect of triboelectricity. Starting from the expanded Maxwell’s equati...Triboelectric nanogenerator(TENG) is an emerging powerful technology for converting ambient mechanical energy into electrical energy through the effect of triboelectricity. Starting from the expanded Maxwell’s equations, the theoretical framework of TENGs has been gradually established. Here, a review is given about its recent progress in constructing of this general theory. The fundamental mechanism of TENGs is constructed by the driving force—Maxwell’s displacement current, which is essentially different from that of electromagnetic generators. Theoretical calculations of the displacement current from a threedimensional mathematical model are presented, as well as the theoretical studies on the TENGs according to the capacitor models. Furthermore, the figure-of-merits and standards for quantifying the TENG’s output characteristics are discussed, which will provide important guidelines for optimizing the structure and performance of TENGs toward practical applications. Finally,perspectives and challenges are proposed about the basic theory of TENGs and its future technology development.展开更多
This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitut...This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one,in which the parameters all are determined in terms of the material and geometric ones of the spheres,and the behaviors of perfect elastic,inelastic,and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is specified in the region of 0 ≤ ε ≤ 1.After an empirical formula of the coefficient of restitution dependent on the impact velocity is suggested to fit the existing experimental measurements by means of the least square method,the predictions of the dependency and the collision duration are in well quantitative agreement with their experimental measurements.It is found that the measurable quantities are dependent on both the impact velocity and the parameters of spheres.Following this model,finally,an approach to determine the spring coefficient in the linear viscoelastic model of the collision is also displayed.These results obtained here will be significantly beneficial for the applications where a collision model is requested in the simulations of relevant grain flows and impact dynamics etc..展开更多
Through the test of CH4 displaced by CO2 using the coal sample as the adsorbent, this paper has found the coalbed methane (CBM) displacement desorption phenomenon under the natural conditions and CBM mining conditions...Through the test of CH4 displaced by CO2 using the coal sample as the adsorbent, this paper has found the coalbed methane (CBM) displacement desorption phenomenon under the natural conditions and CBM mining conditions. With the help of the adsorption theory of the modern physical chemistry and interfacial chemistry, the CBM competitive adsorption and displacement desorption mechanism are intensively discussed, and a new path for studying the CBM desorption mechanism in the CBM exploitation process is explored.展开更多
基金supported by the National Key R&D Project from Minister of Science and Technology, China (Grant No. 2016YFA0202704)National Natural Science Foundation of China (Grant Nos. 51432005, 51702018, and 51561145021)Youth Innovation Promotion Association, CAS, and China Postdoctoral Science Foundation (Grant No. 2019M660766)。
文摘Triboelectric nanogenerator(TENG) is an emerging powerful technology for converting ambient mechanical energy into electrical energy through the effect of triboelectricity. Starting from the expanded Maxwell’s equations, the theoretical framework of TENGs has been gradually established. Here, a review is given about its recent progress in constructing of this general theory. The fundamental mechanism of TENGs is constructed by the driving force—Maxwell’s displacement current, which is essentially different from that of electromagnetic generators. Theoretical calculations of the displacement current from a threedimensional mathematical model are presented, as well as the theoretical studies on the TENGs according to the capacitor models. Furthermore, the figure-of-merits and standards for quantifying the TENG’s output characteristics are discussed, which will provide important guidelines for optimizing the structure and performance of TENGs toward practical applications. Finally,perspectives and challenges are proposed about the basic theory of TENGs and its future technology development.
基金supported by the Key Fund of the National Natural Science Foundation of China (11032006)
文摘This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one,in which the parameters all are determined in terms of the material and geometric ones of the spheres,and the behaviors of perfect elastic,inelastic,and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is specified in the region of 0 ≤ ε ≤ 1.After an empirical formula of the coefficient of restitution dependent on the impact velocity is suggested to fit the existing experimental measurements by means of the least square method,the predictions of the dependency and the collision duration are in well quantitative agreement with their experimental measurements.It is found that the measurable quantities are dependent on both the impact velocity and the parameters of spheres.Following this model,finally,an approach to determine the spring coefficient in the linear viscoelastic model of the collision is also displayed.These results obtained here will be significantly beneficial for the applications where a collision model is requested in the simulations of relevant grain flows and impact dynamics etc..
文摘Through the test of CH4 displaced by CO2 using the coal sample as the adsorbent, this paper has found the coalbed methane (CBM) displacement desorption phenomenon under the natural conditions and CBM mining conditions. With the help of the adsorption theory of the modern physical chemistry and interfacial chemistry, the CBM competitive adsorption and displacement desorption mechanism are intensively discussed, and a new path for studying the CBM desorption mechanism in the CBM exploitation process is explored.