An analytical solution is presented for the radiation and the diffraction of a cylindrical body with a moon pool floating on the surface of water with a finite depth. The expressions for the potentials are obtained by...An analytical solution is presented for the radiation and the diffraction of a cylindrical body with a moon pool floating on the surface of water with a finite depth. The expressions for the potentials are obtained by the method of separation of variables, and the unknown coefficients are determined by the boundary conditions and the matching requirements on the interface. The effects of the moon pool on the hydrodynamic characteristics of the body are investigated. Some peaks are observed on the curves of the added mass and damping coefficients, corresponding to the resonant frequencies of the moon pool. The internal free surface moves like a piston at a certain low resonant frequency.展开更多
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory...The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.展开更多
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom...The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.展开更多
This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the unce...This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the uncer-tainty by using a few random variables.The nonlinear stochastic problems require solving the nonlinear system for a large number of samples in the stochastic space to quantify the statistics of the system of response and explore the uncertainty quantification.The computational cost is very expensive.To overcome the difficulty,a low rank approximation is introduced to the solution of the corresponding nonlinear problem and admits a variable-separation form in terms of stochastic basis functions and deterministic basis functions.No it-eration is performed at each enrichment step.These basis functions are model-oriented and involve offline computation.To efficiently identify the stochastic basis functions,we utilize the greedy algorithm to select some optimal sam-ples.Then the modified Chebyshev-Picard iteration method is used to solve the nonlinear system at the selected optimal samples,the solutions of which are used to train the deterministic basis functions.With the deterministic basis functions,we can obtain the corresponding stochastic basis functions by solv-ing linear differential systems.The computation of the stochastic Chebyshev-Picard method decomposes into an offline phase and an online phase.This is very desirable for scientific computation.Several examples are presented to illustrate the efficacy of the proposed method for different nonlinear differential equations.展开更多
基金supported by the Lloyd's Register Educational Trust (LRET) through the joint centre involving University College London,Shanghai Jiao Tong University and Harbin Engineering University,to which the authors are most grateful
文摘An analytical solution is presented for the radiation and the diffraction of a cylindrical body with a moon pool floating on the surface of water with a finite depth. The expressions for the potentials are obtained by the method of separation of variables, and the unknown coefficients are determined by the boundary conditions and the matching requirements on the interface. The effects of the moon pool on the hydrodynamic characteristics of the body are investigated. Some peaks are observed on the curves of the added mass and damping coefficients, corresponding to the resonant frequencies of the moon pool. The internal free surface moves like a piston at a certain low resonant frequency.
基金supported by the Lloyd's Register Educational Trust (The LRET) through the joint centre involving University College London, Shanghai Jiao Tong University and Harbin Engineering University
文摘The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi- infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.
基金supported by the National Natural Science Foundation of China (Grant No 10562002)the Natural Science Foundation of Inner Mongolia, China (Grant No 200508010103)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070126002)the Inner Mongolia University Doctoral Scientific Research Starting Foundation
文摘The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.
基金supported by the National Natural Science Foundation of China (Grant No.12101217)by the China Postdoctoral Science Foundation (Grant No.2022M713875)by the Natural Science Foundation of Hunan Province (Grant No.2022J40113).
文摘This work presents a stochastic Chebyshev-Picard iteration method to efficiently solve nonlinear differential equations with random inputs.If the nonlinear problem involves uncertainty,we need to characterize the uncer-tainty by using a few random variables.The nonlinear stochastic problems require solving the nonlinear system for a large number of samples in the stochastic space to quantify the statistics of the system of response and explore the uncertainty quantification.The computational cost is very expensive.To overcome the difficulty,a low rank approximation is introduced to the solution of the corresponding nonlinear problem and admits a variable-separation form in terms of stochastic basis functions and deterministic basis functions.No it-eration is performed at each enrichment step.These basis functions are model-oriented and involve offline computation.To efficiently identify the stochastic basis functions,we utilize the greedy algorithm to select some optimal sam-ples.Then the modified Chebyshev-Picard iteration method is used to solve the nonlinear system at the selected optimal samples,the solutions of which are used to train the deterministic basis functions.With the deterministic basis functions,we can obtain the corresponding stochastic basis functions by solv-ing linear differential systems.The computation of the stochastic Chebyshev-Picard method decomposes into an offline phase and an online phase.This is very desirable for scientific computation.Several examples are presented to illustrate the efficacy of the proposed method for different nonlinear differential equations.