本文主要通过 X 射线衍射实验,研究冷冲模钢(Cr12、Cr12MoV)深冷处理时的相变.研究指出,深冷处理不仅使残余奥氏体转变为马氏理体,还使碳从马氏体和残余奥氏体中脱溶,以碳化物形式析出.深冷处理提高了钢的硬度和耐磨性,从而提高了模具...本文主要通过 X 射线衍射实验,研究冷冲模钢(Cr12、Cr12MoV)深冷处理时的相变.研究指出,深冷处理不仅使残余奥氏体转变为马氏理体,还使碳从马氏体和残余奥氏体中脱溶,以碳化物形式析出.深冷处理提高了钢的硬度和耐磨性,从而提高了模具的使用寿命.展开更多
The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the ...The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.展开更多
Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomp...Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomposes. The decomposition result is fixed in the solid phase as inhomogeneous component distribution. Our experimental results enable to argue that the eutectic pattern forms due to interface instability and spinodal decomposition of non-equilibrium solution forming in front of the interface.展开更多
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi...The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.展开更多
The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. Wi...The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. With the maximum cyclic temperature of 1 173~1 223 K , the minimum cyclic temperature of 1 073~1 093 K , the heating velocity of 30~50 K/s , the cooling velocity of 15~20 K/s , the cycle numbers of 15~20 and bonding pressure is 13 MPa , the tensile strength of joint is more than 380 MPa , exceeding 80% of that of Ti.展开更多
基金supported by the National Basic Research Program of China (2016YFA0202400 and 2015CB932200)the National Natural Science Foundation of China (21403247)+2 种基金the External Cooperation Program of BIC, Distinguished Youth Foundation of Anhui Province (1708085J09)Chinese Academy of Sciences (GJHZ1607)STS project of Chinese Academy of Sciences (KFJ-SW-STS-152)
文摘The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.
文摘Here we show the results of experimental observation of decomposition of the solution components into the neighboring cells. The liquid solution under crystallization first gets into the unstable state and then decomposes. The decomposition result is fixed in the solid phase as inhomogeneous component distribution. Our experimental results enable to argue that the eutectic pattern forms due to interface instability and spinodal decomposition of non-equilibrium solution forming in front of the interface.
基金Project(51171209)supported by the National Natural Science Foundation of China
文摘The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.
文摘The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. With the maximum cyclic temperature of 1 173~1 223 K , the minimum cyclic temperature of 1 073~1 093 K , the heating velocity of 30~50 K/s , the cooling velocity of 15~20 K/s , the cycle numbers of 15~20 and bonding pressure is 13 MPa , the tensile strength of joint is more than 380 MPa , exceeding 80% of that of Ti.